

A Correspondence Between

Denotational Semantics

and

Code Generation

Martin R. Raskovsky

A Correspondence Between

Denotational Semantics

and

Code Generation

Martin R. Raskovsky

|

Thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Essex

August 8th 1982

my father - in memoriam.

my mother, Daniel,

my sisters and brothers.

- II -

Abstract

We describe a method for the systematic derivation, or automatic generation

- from the formal denotational semantic specification - of an efficient

compiler's code generation phase, producing efficient code for real

machines. The method has been successfully implemented and tested with

languages as complex as GEDANKEN!

The method has been used to implement a compiler-compiler which inputs the

semantic specification of a programming language written in a standard

denotational form, analyses it in the light of its semantic contents,

decides upon certain predecided general implementation issues and outputs a

program written in the systems programming language BCPL. This program

constitutes the type .checking and code generation phases of a compiler for

the given language. Its structure and operation is in effect essentially the

same that we would have produced by hand. The only hand coding is the

interface for the particular target machine, required for both the primitive

functions of the original specification and those introduced by the

compiler-compiler. For the latter, our system provides a library of routines

to generate code for the DEC-10 system. So that in all the examples we

tried, we only had to hand code the former. The parser is separately

generated with an LLl system which also generates BCPL procedures.

- Ill -

Acknowledgments

The original idea, on which this thesis is based, was implicitly suggested

by the lectures given by: M.Brady, R.Bornat, P.Hayes and R.Turner, who

combined the Scott-Strachey approach to programming language theory with

programming language implementation techniques.

R.Turner, my supervisor, gave the necessary Insight into denotational

semantics, without which this thesis would not have been possible.

P.Collier contributed, during the first period, congruence proofs between

the standard and implementation versions of denotational semantics. Also,

his invaluable comments on early drafts of this dissertation are
appreciated.

It was a great pleasure working with M.Henson, his clarity of thought,

encouraging support throughout the years of research and final proof reading
have been of immense value.

B.Sufrin suggested a production rule formalism, to describe abstractly the

implementation; changing completely the mood of this text.

The insight into the DEC-10 operating system, given by N.Wilson, was of

great assistance during the implementation stages.

- IV -

Contents

1 Introduction .. ^
21.1 Analogy ..

1.2 Our contribution ..
1.3 The Form of this T h e s i s .. 11

2 Production S y s t e m ..

2.1 Metalanguages............................
2.1.1 Source ..
2.1.2 Target.. 14

2.2 Conversions .. j
2.2.1 R u l e s
2.2.2 Conditions...

2.3 Transformations ..
2.4 An Example................

2.4.1 Syntactic Transformations iy
2.4.2 Semantic Transformations ^0

Destination Analysis
Continuation Analysis 21
Environment Analysis.................. 2^

2.4.3 Optimising Transformations 25
2.4.4 B C P L ... 25

. . 273 State ..
293.1 Normalisation................

3.2 State Analysis ..
3.2.1 No Copies of the State Allowed.............................32
3.2.2 First Method - Elimination 33

Identity............ ^
Abstraction and Application
Conditional .. ^
Strict ..

3.2.3 Second Method - Structuring
Definitions .. ^
Identity.. * * *
Reversed Composition for Commands
Composition for Expressions 41

3.3 Syntactic Transformations ^
3.3.1 Proceduring ..
3.3.2 Applied Occurrence of Abstractions

3.4 Semantic Transformations .. ™
3.4.1 Destination Analysis

Order of Application
3.4.2 Continuation Analysis 52

Variables as statements ^2
S 3Conditionals ..

F i x .. 55

- V -

3.5 Side effects.................................. -̂j
3.5.1 Reversed S t a r * " ' 57

3.6 The S t o r e * " * 59
3.6.1 Updating.................................... * * " 59
3.6.2 Loading...................................... "60
3.6.3 Tuples....................................

3.7 Structuring............ , .
3.3 BC P L?....................................... ..

4 Environment .. ^

4.1 Syntactic Transformations 70
4.2 Destination Analysis ! ! * * " 71

4.2.1 Template Declaration..................................! ! 71
4.2.2 Template Invocation 73

4.3 Continuation Analysis....................................[* * 74
4.3.1 Template Declaration................................! ! ! 74
4.3.2 Template Invocation 7 ^
4.3.3 Type Checking.. 77

Cond and Scond..................................! ! ! ! ! 80
4.4 Environment Analysis ! ! ! ! ! ! ! 82
4.5 Optimising Transformations 35

4.5.1 Dumping.. g^
4.5.2 Multiple Declarations 37
4.5.3 Loading.. g7

4.6 BC P L gg

5 Continuations ..

5.1 Semantic Transformations 93
5.1.1 Splitting Continuations 93

Expression Continuations 93
Definition.. gg
Applications .. jqq
Abstractions as parameters jqq
Variables as parameters.............................. iqi
Command Continuations 102

5.1.2 Destination Analysis 102
5.1.3 Continuation Analysis.................................... j 04

Command Continuations 104
r „ „ • .Cali..1065.2 Optimising Continuations

5.2.1 Flow Analysis...
5.2.2 False J u m p s .. 103
5.2.3 Conditional Jumps .. 108

5.3 Ellipsis... 112
5.3.1 Syntactic Transformations..................................
5.3.2 Continuation Analysis......................................
5.3.3 Environment Analysis 12q
5.3.4 Optimising Continuations 120
5.3.5 B C P L ...

5.4 Further Developments: GEDANKEN 123
5.4.1 Splitting Continuations 125
5.4.2 Destination Analysis 12g

- VI -

Iterative Creation .. 126
Iterative Conservation 126
Parameters.. 127
Dyadic Operations .. 127

5.4.3 Continuation Analysis 127
Conditional Sk i p ..12?
Iteration..129

5.4.4 Environment Analysis 13®
Declaration..130
Elimination..130

5.4.5 BC P L ..131

6 The Lambda Calculus .. I33

16.1 Direct Semantics..
6.1.1 Syntactic Transformations................................I3 -3

Non-Strict And Thunk......................................I33
6.1.2 Destination Analysis l3^
6.1.3 Continuation Analysis I3®
6.1.4 Optimising Transformations I40

6.2 Continuation Semantics .. j44
6.2.1 Destination Analysis I45
6.2.2 Continuation Analysis 1 ^1 A b\6.3 Comparison ..

7 From Standard to Implementation 152
1 537.1 Boolean Expressions ..

7.2 Arithmetic Expressions..
7.3 Marking locations in u s e ..
7.4 Declaration and Invocation Environment 1°^

7.4.1 (I) Local B i n d i n g ..
7.4.2 (II) External B i n d i n g
7.4.3 (III) Local Workspace
7.4.4 (IV) Initial and Return Continuation...................... I70

A Posteriori Evaluation I72

1 73
8 Conclusion ..

........................177References ..

I O]
Appendix A: The Implementation

A. 1 Early H i s t o r y ..
A.2 Pilot P r o j e c t ..
A.3 The ISL System..
A.4 Concrete Syntax of WFFs ..

- VII -

Appendix B: Transformation Rules

B.l Normalisation.................................... ,
B.2 State Analysis................................. ! ! ! iso
B.3 Syntactic Transformations ! ! ! ! ! ! ! ! ! ! ! ! • • • •
B.4 Splitting Continuations................... [! ! ! ! ! ! ! . * ! ! 191
B.5 Destination Analysis * ! ! * * * 191
B.6 Continuation Analysis *193
B. 7 Environment Analysis................... ! ! ! ! ! ! ! ! ! ! * * * 197
B.8 Optimising Continuations ..
B.9 Optimising Transformations ,qq
b-10 b c p l ..200
B.ll Cross Reference 2qi

Appendix C: Operators .. 205

C.l Source
c -2 T a r * e t ... : : : : : : : : : : : : : : 20 8

Appendix D: Stoy's Final Example 209

Appendix E: GEDANKEN 00/.. 224

- VIII -

List of Snapshots

2 . 1 Original Specification . . 18
2 . 2 Syntactic Transformations 20

2.3 Destination Analysis . . . 21

2.4 Continuation Analysis . . 22

2.5 Environment Analysis . . • 24
2 . 6 26
3.1 Algebraic Language of Flow Diagrams • • Original Specification . . 28
3.2 Normalisation 30
3.3 State Analysis 36
3.4 Original Specification . . 39
3.5 State Analysis 43
3.6 Syntactic Transformations 45
3.7 Destination Analysis . . . 52
3.8 Continuation Analysis . . 56
3.9 Flow Diagrams with Side Effects . . • • Original Specification . . 57
3.10 Original Specification . . 60
3.11 Destination Analysis . . . 61
3.12 Original Specification . . 62
3.13 Destination Analysis . . . 62
3.14 Flow Diagrams State-Unstructured . . • • 6b
4.1 Flow Diagrams with Environments . . • • Original Specification . . 67
4.2 Original Specification . . 69
4.3 Flow Diagrams with Environments . . • • Destination Analysis . . . / 3
4.4 Continuation Analysis . . 81
4.5 Environment Analysis . . . 86

4.6 89
4.7 Flow Diagrams with Environments . . • • BCPL • • • • • • * • • • • 92
5.1 Original Specification . . 96
5.2 Syntactic Transformations 99
5.3 Splitting Continuations . 101

5.4 Destination Analysis . . . 103
5.5 109
5.6 Original Specification . . 112
5.7 Original Specification . . 113
5.8 Syntactic Transformations 1 1/
5.9 121
5.10 Original Specification . . 123
5.11 Syntactic Transformations 124
5.12 GEDANKEN: Sequences (in effect) . . • • Syntactic Transformations 124
5.13 Splitting Continuations 125
5.14 Destination Analysis . . . 128
5.15 GEDANKEN: Sequence of Parameters . . • • Continuation Analysis . . 129
5.16 Environment Analysis . . . 131
6 . 1 Original Specification . . 134
6 . 2 Splitting Continuations 137
6.3 140
6.4 The Lambda Calculus(Continuation) • • Original Specification . . 143
6.5 Splitting Continuations 145
6 . 6 149
7.1 Original Specification . . 153

- IX -

7 9
7.3 Boolean Expressions(IDS)
7.4 '
7.5 Arithmetic Expressions(SDS)
7.6
7.7 Arithmetic Expressions(IDS)
7.8
7.9 The Store with Locations(SDS)
7 * 1 0
7.11 The Store with Locations(IDS)
7.1 2
7.13 Environment (SDS)
7.14 Environment (IDS)
D.l Stoy's Final Example
D.2
E.l GEDANKEN.............. ! ! !
E.2

BCPL . . • • • • • • • • 154
Original Specification • 155
BCPL . . • • • • • • • • 156
Original Specification • 157
BCPL . . • • • • • • • • 158
Original Specification • 159

• 160
Original Specification • 161
BCPL . . • • • • • • • • 163
Original Specification • 163

164
Original Specification • 165
Original Specification • 171
Original Specification • 209

213
Original Specification • 224

227

’ s

.

.V

.. « ''■* i-.f. “

■>e

CHAPTER 1

Introduction

The formal aspects of the syntax and semantics of programming languages,

together with their underlying theories, have proved to be very useful for

systematically writing, or mechanically generating, implementations for

these languages. ,

For example, the style of description of ALG0L60 suggested to E. Irons

[Iro61], that the formal syntactic description of the language could be used

to control the compiler for the language directly. Shortly after, the term

'compiler-compiler' was already being used by R. Brooker [Bro62] [Bro63],

however, [Bro60] describes an 'autocode to write autocodes'.

The micro—syntax of a language — how words are formed — is in general

specified by a regular grammar (RG), whose associated implementation system

is a finite state machine (FSM). The theory of regular languages and finite

automata was developed in the early 1950's and is therefore one of the

oldest branches of theoretical computing science. On the other hand, the

syntax of a language - how words are put together into sentences - is in

general specified by a context free grammar (CFG), whose associated

implementation system is a push down automaton (PDA). The early 1960's

witnessed a tremendous growth in language theory, the Chomsky hierarchy has

been extensively studied by many people. Finally, the semantics of a

language - what a sentence means - is for our purposes specified by abstract

mathematical entities, a system of functions whose associated implementation

system is the lambda calculus (LAM). This method, Denotational Semantics

(DS), originated in the late 1960's. C. Strachey in his early paper 'Towards

- 2 -

a formal Semantics' [Str6 6], showed that with the introduction of a few new

basic concepts it was possible to describe not only the applicative, but

also the imperative parts of a programming language in terms of applicative

expressions [Lan65]. The result of Strachey's joint work with D. Scott,

which started in 1969 [Sco70], was the construction of ^-calculus models and

reflexive domains: The main point is the treatment of functions as the

representation of the meaning of programs, rather than the syntactic or

operational representation used thus far.

1.1 Analogy

The three implementation systems: FSM, PDA and LAM, can be regarded as input

programs to a compiler generator system whose output can be interpreted by a

direct simulation of each underlying machine. For example, from the

definition of a particular FSM:

<S, I, s, 0, M> where
S = finite non-empty set of states.
I = finite input alphabet,
s = the initial state in S.
0 = set of final states (0 C; S).
M = the state transition function ([S x I] >• S).

one can implement a lexical analyser by a simulation of M (also by adding a

set of actions, an error state and a set of declarations global to every

action). This approach to automatic generation of lexical analysers is

extensively described in [Lew79].

From the definition of a PDA:

- 3 -

<S, I, P, s, p, 0, M> where
S = finite set of states.
I = finite input alphabet.
P = finite pushdown alphabet,
s = the initial state in S.
p = the start symbol in P.
0 = set of final states (0 C S).
M = the state transition function

([S x [I + {empty}] x P] > finite subsets of [S x P*).

one can implement a parser, by a simulation of P and M, (also adding

actions, error state, declarations, attributes values and attributed

pushdown symbols). Syntax directed translation has been known for quite a

long time, [Iro61], [Knu6 8], [Lew6 8], [AaU69], [AaU72] and [Lew79] are just

a few references to the subject.

From the DS definition of the semantics of a programming language in LAM:

i:Ide. identifiers
e:Lam. lambda expressions ' *

e ::= i | ee' | Xi.e | (e)

one can directly implement the conversions of the ^-calculus:

a. If i is not free in e, then Xi'*e => ^i.[i/i']e.
b. Qi.e)e' =>fe [e'/i]e.
n. If i is not free in e, then Xi»ei => e. *n

Pioneer work in the area of compiler generation from denotational semantics,

was carried out by P. Mosses [Mos75] [Mos76] [Mos78], whose system known as

SIS (Semantic Implementation System), uniformly translates DS equations into

LAM, and then runs an interpreter over this 'code'. Also, later work by

[Jon80], [Gan80], [Ras80], [Pau81], [Hen82] and [Set82] has shown that

semantic directed compiler/interpreter generation out of DS is a young and

promising area of research.

_ 4 -

Mosses's approach is simple and general; He treats a semantic specification

as a program for a simulated LAM machine exactly in the same way as an RG or

CFG is seen as program for respectively an FSM or a PDA. The result is,

however, not always efficient and practical. In particular, the lack of

efficiency of SIS reminds one of an analogy between the systems devised to

efficiently implement an FSM or a PDA; they are not necessarily a simulation

of the underlying automaton. In the same way, one can think of an

implementation of LAM which does not necessarily call for a lambda

interpreter. The particular problem with a semantic specification is that it

refers to a run time activity, as opposed to a syntactic specification which

refers to a recognise and parse activity. At run time efficiency matters

become crucial.

An alternative approach for achieving an efficient and practical

implementation is to use the formal specification to 'derive' or 'generate'

a 'program', written in a systems programming language. From an RG one can

generate a scanner, from a CFG a parser and from a DS a code generator.

These three programs perform each a function which can be expressed as:

scanner:[CHA » SYM], parser:[SYM » TRE], translator:[TRE » COD] where
CHA = the representation of the source program as a character string.
SYM = the internal representation as a sequence of symbols.
TRE = the internal representation in the form of a tree.
COD = the target code.

In our research, the missing function checker:[TRE ^ TRE] (to type check and

solve the context sensitive aspects of a programming language) is embedded

in the code generation phase.

Consider as an example, the RG specification of IDENTIFIERS as an instance

- 5 -

of a lexical specification:

t i | ... terminals
i u a* identifiersa :: = u | 1 1 d alphabetic
u : : = 'A' ... | 'Z' upper
1 2 2 = 'a' ... | 'z' lower
d 2 2 = '0' ... | '9' digit

The first step in a derivation of a scanner is to generate a recogniser:

let scann.next.symbol() be switchon current.character into
{ case 'A' ... 'Z':

scann.next.character() repeatwhile 'A' <= current.character <= 'Z' \/
'a' <= current.character <= 'z' \/
'0' <= current.character <= '9'

endcase

case ...
}____

Next, one can inject simple implementation techniques to transform it into a

scanner:

let scann.next.symbolQ be switchon current.character into
{ case 'A' ... 'Z':

{ let v = vec max.ident
let i = 0
{ i := i + 1
v!i := current.character
scann.next.character()

} repeatwhile 'A' <= current.character <= 'Z' \/
'a' <= current.character <= 'z' \/
'0 ' <= current.character <= '9 '

v ! 0 := i
current.symbol := look.up.ident(v)

}
endcase

case ...
}____________________________________

Note that this scanner, derived from the original RG specification, makes

reference to a symbol structure via the call of the function look.up.ident

- 6 -

whose specification was not given and is left open for an implementer to

design according to his own implementation choice. Also the interface to an

operating system or front-end, throughout the call of the procedure

scann.next.character is also left unspecified, so that in a different

environment, or different hardware configuration, an implementer can choose

the appropriate implementation.

Now consider the CFG specification of a WHILE-LOOP as an instance of a

command definition:

c ::= While b Do Cj | ...

Again, the first step is to derive a recogniser for this fragment, for

example:

let parse.c() be switchon current.symbol into
{ case symbol.While:

{ scan.next.symbol()
parse.b()
check.for(symbol.Do)
parse.c()

}
endcase

case ...
}___

Next, this recogniser can easily be made into a parser (a tree constructor)

by adding appropriate action routines:

let parse.c() = valof switchon current.symbol into
{ case symbol.While:

{ let pi, p2 = nil, nil
scan.next.symbol()
pi := parse.b()
check.for(symbol.Do)
p2 := parse.c()
resultis make.node2(N2..While, pi, p2)

}

case ...

In this parser, one must note again, how the structure of the internal

representation of the syntactic structure of a program is not specified.

Again this leaves crucial implementation details open for an implementer to

decide. So in this respect, we are arguing for a generation of structured

and efficient compilers.

Finally, consider the semantic specification for the same fragment:

Syntactic Domains
b:Boo.
c: Com.
i:Ide.

Syntax
c ::= While b Do ĉ | ..

Semantic Domains
D.
S.

c:C=[S > S].
k:K=[T » C].
t:T=[{ True } + { False }].
p : U= [[Ide » D] x C].

Semantic Selector
pBRK==pi2.

Semantic Functions
B:[Boo » U > K > C].
C:[Com » U > C » C].

C[While b Do c.]pc=
Fix{>c'.B[b]p{>t.t>C[c1](p[c/BRK])c,,c}}.

This definition is far more complex in its structure and information content

than the syntactic one above. Though at first one may have the impression

that the relationship between this semantic specification and a procedure to

generate code for the same fragment is hopelessly unrecognisable, in fact,

there are many systematic relationships between both. This relationship is

important to anyone who wishes to study semantic or implementation

structures.

boolean expressions
commands
identifiers

denoted values
states
command continuations
expression continuations
boolean values
environments

- 8 -

As an example of the correspondence that we are proposing here is the first

step; The derivation of the skeleton of a translator:

let trans.C(node, p, c) be switchon type^node into
{ case N2..While:

Fix(3»cl.trans.B(pl~node, p, H.t>trans.C(p2/'node, p([c/BRK]), cl),c))
endcase

case ...
}__

The second step is to derive from this, the translator or code generator:

let trans.C(node).cont.(continue, jump) be switchon type^node into
{ case N2..While:

{0 let restart.code = here(D..C0D)
let continuel = forward(D..COD)
trans.B(pl"node).cont.(continue 1 , false.jump).dest.(first.reg)
fix.here(continuel)
trans.jump.if.false(first.reg, continue)
{ let old.env = this.env
declare(D..COD, continue, BRK)
trans.C(p2~node).cont.(restart.code, true.jump)
reset(old.env)

}0 ; endcase

case ...
}___ ____ ___

The functions and procedures here, forward and fix.here relate to open

implementation issues with respect to a code structure; declare, reset and

this.env refer to a descriptor structure; first.reg to a run-time structure;

trans.jump.if.false to a code generator interface; trans.B is a procedure

which is expected to be generated accordingly to the DS specification for

boolean expressions; And finally node, type, pi and _g2̂ refer to a tree

structure.

- 9 -

1.2 Our contribution

The generation of an efficient and practical program out of the formal

specification of the syntax (or lexical) issues of a programming language is

a solved problem. However, the generation of an efficient translator out of

a semantic specification in the form of a denotational semantics is not.

This thesis: A Correspondence Between the Denotational Semantics of

Programming Languages and the Process of Code Generation, has grown out of

experience in the engineering task of implementing a semantics directed

compiler generator. As will be quite evident, the method, as with the analog

syntactic problem, is to generate a program, written in a systems

programming language, by transforming the semantic specification. The

treatment of the relationships, between the source semantics and the target

implementation indicates clearly a dependency upon the form and structure of

both source mathematical metalanguage and target systems programming

language. However, the manner in which the generation is formulated does not

adhere rigidly to any particular semantic or implementation model. As a

result, the method can be readily adapted to a variety of practical

situations.

An essential feature of this thesis is the series of compiler generation

examples presented, in general taken from J. Stoy's "Denotational Semantics:

The Scott-Strachey Approach To Programming Language Theory" [Sto77]. This is

designed to make the format more approachable to anybody familiar with this

excellent account of denotational semantics.

This thesis will show how one can systematically derive, or automatically

generate, the code generation phase of compilers for languages like those

- 10 -

given as examples of semantic definitions in [Sto77] or as complex as

GEDANKEN [Rey70j.

The novel aspect of our contribution is our method of analysing a

denotational specification. From a purely mathematical point of view the way

that functions in some abstract space are described is irrelevant. But if

one is to process this specification automatically, then the particular

representation of these functions is important. We call this representation

the concrete semantics. Concrete semantics can be interpreted

algorithmically. This is what P. Mosses did by a direct interpretation of

LAM. Our approach is characterised by the observation that under an

appropriate algorithmic interpretation, functions and domains of a concrete

semantics, can be regarded as procedures and data-types. Such interpretation

amounts to establishing a correspondence between functions and procedures

and therefore also between domains and data-types,

The structure and operation of the automatically generated (or

systematically derived) code generator, which is written in the systems

programming language BCPL, is in effect very similar to the one we might

have produced by hand. The only hand coding is the interface for the

particular target machine, required for both the primitive functions of the

original specification and those introduced by the generation. For the

latter, our system provides a library of routines to generate code for the

DEC-10 system, so that in all the examples we tried, we only had to hand

code the former. The parser is separately generated with an LL1 system

[Suf78a] which generates procedures in the same systems programming

language.

- 11 -

Our research is not directly concerned with the problem of correctness. We

are mainly interested in the correspondence between a denotational

specification and the process of code generation. We are also interested in

showing that this correspondence can be used to produce a compiler—compiler,

and that the code generators obtained by such a system produce efficient

code.

In the following sequence of operations:

0. Given a transformational system T
and a denotational specification S of a programming language L.

1. Using T, generate from S a code generator G for L.
2. Using G, compile a program P (in L) producing code C for the DEC-10.
3. Running C over some input I obtaining an output 0.

we have limited our requirements for correctness to the empirical results of

the input/output behaviour of T, G and C respectively in 1, 2 and 3.

However we do appreciate the need for correctness proofs. So among the lines

given for future research, we indicate how we might proceed to prove the

correctness of the automatically generated (or systematically derived) code

generators.

1.3 The Form of this Thesis

In Chapter 2 we introduce a mechanism of transformation, a production rule

system to transform semantic equations into procedures of the programming

language BCPL [Ric79]. Chapters 3 to 5 each analyses a different programming

language example (fi-o-m [Sto77]) with increasing levels of difficulty. The

main features are respectively: state, environment and continuations.

Chapter 6 looks at the Lambda Calculus, defined using both direct and

- 12 -

continuation semantics, both with call by value and name. Chapter 7

describes a different approach: instead of starting with a standard

denotational semantics, we study the possibility of abstracting

implementation ideas at a denotational level, thus starting with an

implementation denotational semantics. The objective of this exercise is the

generation of more efficient code generators and also to provide the grounds

for correctness proofs, as we have shown in [Ras80]. Finally, Chapter 8

looks at some future directions of our research.

Appendix A briefly describes the implementation of a system called ISL

(Implementation Semantic Language), which has automatically generated all

the examples shown in this thesis ([Ras79] [Ras80] [Ras81] [Ras82]). In

Appendix B, we have collected together all transformation rules. Appendix C

defines the operators used in the source and target metalanguages.

Appendices D and E show the two main examples, Stoy's example language and

GEDANKEN.

CHAPTER 2

Production System

In this chapter we introduce the notation used to describe the

transformation process which, starting from a DS description of a particular

programming language, ends up with a Code Generation Process (CGP) for the

same language. From the DS specification, we will deduce (and generate)

procedures written in the systems programming language BCPL [Ric79]. These

procedures are language dependent and by contrast, under certain design

options machine independent. They are the non-primitive operations of a CGP,

whose primitive operations and target machine are not specified. In other

words, we are regarding the DS as a specification of a CGP. In order to

deduce the CGP, we will apply a set of transformations which are formally

defined by production rules, each one consisting of a conditioned

conversion.

2.1 Metalanguages
2.1.1 Source

Before we can define precisely what we mean by a 'transformation', we have

to formalise the metalanguage in which the semantic specifications are

written. It is an extension of the typed V-calculus, the well-formed

formulae WFF (source) of this metalanguage are: s

S:Sou. source expressions
a:Nam. non-decorated names
d:Dom. domain expressions
e :Exp. lambda-expressions
f:Fun. function operators
g:Dop. domain operators
i:Ide. semantic names
m :Mon. monadic operators
n:Num. numerals
o :Opr. dyadic operators

- 14 -

p:Par.
q:Equ.
s:Syn.
v:Val.
d :: = i 1 d* 1 dlf d 2 1 [d]
e : : = S
f : : = + 1 x I >
g :: = ? 1 ?? 1 '1' 1 In

1 v | [s]i : : = a I al 1 ... 1 a | a* | nm : : = #
o : : = o I * 1 ± 1 * 1 = 1 Eq |I Ne | Ls
P ” = PP1 1 i 1 <ij»•••’V 1

null
n • • a4 • • vp=e.
S :: = i 1 n I >p.e I Xp. ... e 1 e e |

[el7e2] 1 e^...e | e.where p=e„ n 1 2

parameter lists
equations
syntactic strings
semantic valuators

(e

The semantics of the different operators are formally defined in Appendix C.

Projections ('|') and injections (In) are 'transparent', meaning that they

do not intervene actively in the process of transformation; they are kept

only as long as they are active carriers of information about functionality;

as soon as they become unnecessary they are automatically deleted.

2.1.2 Target

We also have to formalise the final outcome well-formed formulae WFFt

(target), which is a subset of the language BCPL:

T:TAR. target
A:AUX. auxiliary parameters
C:COM. commands
D:DUM. dummy parameters
E:EXP. expressions
I:IDE. identifiers
N:MON. monadic operators
0:OPR. dyadic operators
P:PAR. parameter lists
A ::= .dest.(P)A | .cont.(P)A | null
C ::= T
D ::= I | I,D | null
E ::= I | E(P)A | E OE, | N E | E->E ,E | (E)
N ::= ! I not
0 ::= * I ! | + | - I = I Eq | Ne | Ls | Le | Gr | Ge
P ::= E | E,P | null

- 15 -

T ::= {C} | let I(D)A be C | let I(D)A=valof C | let I=E | resultis E |
E1:=E2 1 E^P Â 1 test E then Cior C I if E then C | unless E do C |
for I=E^to E^do C | switchon E into C | case I:C | endcase | C^C^

The operators are also defined in Appendix C. In Essex-BCPL, the sequence

"). and any character up to (", is equivalent to comma. As an aid to the eye

and where appropriate, we will replace by a new line. Also, when the

length of a parameter list is not relevant, we will allow possible null

parameters. For example: Eq(P^, E^, P^) may denote an instance of a function

or procedure call with any P optionally null. Similarly, we will allow

possible null commands, for example: { C^; C; C2 } may denote a block

instance with any (L optionally null.

2.2 Conversions

2.2.1 Rules

Conversions are defined by production rules of the form:

eo => ei
meaning that e^ is converted to e^. Except for the first and last conversion

of a given expression, where respectively e :WFF and e.:WFF , e and eU S 1 t (J 1
belong to WFF^ (the middle metalanguage), the combination of both source and

target which results of the following redefinition of e:Exp and C:COM:

m:Mid. middle expressions
M ::= S | T
e : := M
C ::= M

2.2.2 Conditions

Conversions are conditioned by boolean expressions, introduced by when,

which 'trigger' the transformations and 'syntactically sugared' by where and

- 16 -

rename expressions. In general they are of the form:

e 0 I I ei
where e„=e? | => | wnere e =e^

when <condition>__ | |__rename i=>I

This conversion indicates that under both where definitions, if <condition>

is satisfied, then e^ is to be transformed to e^. The rename construction

helps to shorten the length of conversions, it indicates the substitution of

I for i in (equivalent to [1/i]e^). Expressions in when, where and rename

clauses are defined by:

- Informal text.
- Usual boolean and arithmetic operators.
- Test for domain membership and domain re-definition In.
- Test for sub-domain (Z.
- Textual equivalence = and non-equivalence t..

For example, the rule to transform an expression involving the minimal fix

point finder of a state to state abstraction is:

when i:[S»S] Fix(>i.e) I => I { let i = here(COD); e }
| | rename i=>restart.code

This rule is specifying a transformation for every expression of the form

indicated by the left hand side, if and only if, the bound variable 'i'

belongs to the domain [S»S]. The result of such a rule is indicated by the

form of the right hand side. The rename construction specifies that the name

'i' must be substituted by 'restart' in every sub-expression of the right

hand side; this includes the let declaration and also any occurrence of 'i'

inside 'e'.

Textual equivalence =_and non-equivalence are used to test the particular

instance of a WFF expression. For example:

eZe 1e 2 and e^p.e.^

is equivalent to

IsApplication(e) and not IsAbstraction(FunctionPart(e))

- 17 -

2.3 Transformations

A transformation is the process of actively filtering a WFF through alls
possible conversions, under the constraints indicated by the conditions. The

productions are divided into different disjoint subsets. Among them we can

find syntactic, semantic and optimising transformations. The following is a

list of all subsets:

1 Normalisation (, Continuation Analysis
2 State Analysis 7 Environment Analysis
3 Syntactic Transformations 8 Optimising Continuations
4 Splitting Continuations 9 Optimising Transformations
5 Destination Analysis A BCPL

Each rule will be numbered as [Rn.i], where n is one of C1..9, A> as

described above, and i is the rule number within n. To illustrate the nature

of the transformations, we shall indicate the intermediate steps by

'snapshots'.

The information required to perform the transformations is obtained,

firstly, from the concrete semantics, i.e: from the particular

representation of the semantic functions, and secondly from certain domains

that our system has to know about. To avoid having to write semantic

equations with name dependency, we introduced the idea of a 'domain of

interest', which for a given compiler-generation process must be given. The

following is a list of all domains of interest known to our system:

- 18 -

ANS Answers
ENV Environments
TEM Templates(functions and procedures)
BOO Compile-Time booleans
LOC Locations

STA States
REG Registered values
THU Thunks(call by name)
INT Compile-Time integers
QUO Quotations

The importance of these domains, is that they characterise, from a code

generation standpoint, the minimal information required to transform the

programming languages that we will consider.

2.4 An Example

Snapshot 2.1: The Lambda Calculus. Original Specification

ele 2

Syntactic Categories
i:Ide.
e :Exp.

Syntax
e :: = i | Lam i. e ̂

Semantic Domains
N.

e:E=[N + F].
F=[E > E].

p:U=[Ide > E].

Semantic Domains of 'Interest'
ENV=U.
REG=E.
TEM=F.

Semantic Equations
E: [Exp > U > E].

E[i]p=
p[i] •

E[Lam i.e.]p=
Strict(*e.E[e^](p[e/[i]])) In E.

E[e e lp=
(iee'.(e|F)e')(E[ei]p)(E[e2]p).

identifiers(undef)
lambda-expressions

basic values
values of expressions
function values
environments

environments
registered values
templates

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

- 19 -

We have introduced the mechanism of transformation. In the following

chapters, we will follow [Sto77] examples; for every example language, we

define the appropriate conversion rules. To conclude this introductory

chapter, we will follow the transformation process for the Lambda Calculus

in its direct form with call by value. The original specification for this

language is shown in Snapshot 2.1.

2.4.1 Syntactic Transformations

The first transformation set for this language is syntactic. It consists of

rules which do not convey any implementation detail, only necessary to shape

the CGP in a procedural form. It can be understood as a transformation set

which just projects concrete semantic constructs of the original

metalanguage to equivalent constructs of a different one. The difference is

that the new procedural metalanguage is more suited to an algorithmic

interpretation. In Snapshot 2.2 we show the result of such transformations.

Note that we are tagging transformations with their rule number even

though these rules will be defined in the following chapters. However, to

show the flavour of the transformation process, in this example we will

display some transformations. Here is Rl.l:

if n>l
let v node p be
switchon type'node into
{ case [s^]: e^; endcase
• • •
case [s]: e ; endcase j n n

if n=l
let v node p be ê

Also note that at this stage in the analysis, E is declared (2.2.1) in a

similar way as procedures are declared in BCPL, however, it is used as a

v[s1]p=e1.
• • •
v[s lp=e . n r n

=>

- 20 -

________ Snapshot 2.2: The Lambda Calculus. Syntactic Transformations________
let E(node, p) be switchon type'node into by Rl.l, R3.1 (2.2.1)
{ case [i]:

p([i]); endcase by Rl.l, R3.2 (2.2.2)

case [Lam i.e,]:
(>e.E([e], p([e/[i]]))) In E; endcase

by Rl.l, R3.2/twice, R3.6 (2.2.3)

case [e e„]:
{ let e = E([e.], p); let e' = E([e„], p); e|F(e') }; endcase

by Rl.l, Rl.Z, R3.2/3 times, R3.3, R3.4 (2.2.4)
}

function in (2.2.3) and (2.2.4). This is a symptom of showing an

intermediate stage of the transformation process. If we were to provide a

proof of correctness for each stage in the analysis, then we would have to

define precisely the semantics of each intermediate metalanguage.

2.4.2 Semantic Transformations

Rules within this transformation set are driven, not only by the form of the

concrete semantics, but also by those domains about which the transformation

system knows, i.e: the domains of 'interest'. For example, the domains REG,

TEM and ENV of Snapshot 2.1 are respectively but not exclusively driving the

destination, continuation and environment analysis.

Destination Analysis: After analysing the use of temporary values the

transformation process looks like Snapshot 2.3, where reg, first.reg and

first.par can be understood as fast registers or as pointers to an

activation record. Note that every semantic function giving a result in a

summand of the definition of the domain of interest REG, gets a .dest.(reg)

added to its parameter list, trans.load is a procedure introduced by the

transformation process. Its first parameter indicates the type of object to

be loaded; this information is used for compile or run-time type checking.

- 21 -

__________ Snapshot 2.3: The Lambda Calculus. Destination Analysis__________
let E(node, p).dest.(reg) be switchon type'node into by R5.1 (2.3.1)
{ case [i]:

p([i]).dest.(reg); endcase by R5.3 (2.3.2)

case [Lam i.e.]:
trans.load(F, E([ej , p([first.par/[i]])).dest.(first.reg)).dest.(reg)
In E; endcase by R5.3/twice, R5.8, R5.9, R5.10 (2.3.3)

case [e.^]:
EC[£^J, p).dest.(reg)
E([e j, p).dest.(reg+1)
reg|F(reg+l).dest.(first.reg); endcase by R5.4/twice, R5.ll (2.3.4)

The second parameter is the object to be loaded into the destination

indicated by the third parameter, the .dest.(reg) construction. This

mechanism requires all regs to be carriers of type information. In this

example, the object to be loaded is a function value and it is up to

trans.load to plant the appropriate code to load a closure.

Recall the analogy between the lexical and syntax analysis problem, with the

semantic one, as presented in the Chapter 1: Primitive procedures and

functions like trans.load, introduced by the transformation process, are to

the code generation process what primitives like scann.next.character and

look.up.ident are to a scanner, or what scan.next.symbol and make.node are

to a parser. These activities are not part of the initial specification, but

are deduced and left semi-specified. In this respect, we regard a

specification (lexical, syntactic or semantic) as a schema for machine

translation with slots which have to be filled in.

Continuation Analysis: Next we correlate code fragments. This transformation

set is called Continuation Analysis, but note that its effect is felt in

languages whose specifications do not have continuations. This is because we

- 22 -

__________ Snapshot 2.4: The Lambda Calculus. Continuation Analysis__________
let E(node, p).dest.(reg) be switchon type~node into no change
{ case [i]: no change

case [Lam i.e]:
{ let ntry.aomF = forward(F)
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.domF, node)
E([e^], P([first.par/[i]])).dest.(first.reg)
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(F, ntry.domF).dest.(reg)

}; endcase by R6.4 (2.4.3)

case [e.e„]:
E([e J, p).dest.(reg)
E([e2], p).dest.(reg+l)
trans.call(reg|F, reg+1).dest.(first.reg); endcase by R6 . 6 (2.4.4)

associate continuations with pointers to code, and code is clearly produced

regardless of the presence of continuations explicitly in the definition. In

the Lambda Calculus, the two transformations at this stage are the

specification of abstraction and of application, as can be seen in

Snapshot 2.4. The transformation process, carrying considerable expert

information, has isolated here 'crucial code fragments'. The places for

entry to, exit from and call to a function have been recognised. The domain

of interest TEM indicates which is the domain of functions and together with

the particular form of the concrete semantics, provides the necessary

information for the transformation process to insert appropriate procedure

calls whose task is to generate code for these three crucial places. The

fact that the code associated with the body of a function must not be

executed at declaration time results in the 'skip' statements. Forward

references are also handled by inserting appropriate procedure and function

calls. To illustrate how this expert information is reflected by the

transformation rules, here is R6.4:

when e^TEM e(PQ, e ^ P ^ A

{ let ntry.code = forward(DOM(ep)
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.code, node)
eltrans.exit(exit.code, node)
fix.here(skip.code)
e(PQ, ntry.code, P p A

Environment Analysis: Assuming a block structured use of the environment, we

argue that a direct simulation of the mathematical environment function is

not feasible if efficiency is desired. Thus we translate in a way to have

only one global environment around at a time, for which we provide a data

structure (a symbol table) and primitives to declare search and undeclare

denoted elements. Environments disappear from parameter lists and a

structure is used to recover from declarations to the global environment (a

stack or A-List). The main transformation rule of this analysis is R7.1,

defined as follows:

{ let old.env=this.env

eo(pQ* pi)A reset(ola.env)
}

e0(P0’ e* P1)A 1 =>

when e:ENV and efi

After these transformations, our example looks like Snapshot 2.5. Note how

this text looks almost like the text of a program written in BCPL. At this

stage in this example, the only issues that still look denotational are the

'node references' enclosed between '[' and ']' and the projection '|'.

The primitives look.up and declare might or might not plant code, depending

on the structure of the particular denoted value under scrutiny. In (2.5.2)

look.up has to plant code to load a value into the destination reg. In

- 24 -

__________ Snapshot 2.5: The Lambda Calculus. Environment Analysis___________
let E(node).dest.(reg) be switchon type'node into by R7.5 (2.5.1)
{ case [i]:

look.up([i]).dest.(reg); endcase by R7.4 (2.5.2)

case [Lam i.e]:
{ let ntry.domF = forward(F)
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, [i])
E([e ̂]).dest.(first.reg)
reset(old.env)

}
trans.exit(exit.code, node)
f ix.he re(skip.code)
trans.load(F, ntry.domF).dest.(reg)

}; endcase by R7.1, R7.2 (2.5.3)

case [e.e„]:
E([e.j).dest.(reg)
E([e]).dest.(reg+1)
trans.call(reg|F, reg+1).dest.(first.reg); endcase

by R7.6/twice (2.5.4)
}____________________________________ _____________________________________

(2 .5 .3), declare plants code to store the parameter into a temporary

location updating the global symbol structure to reflect the binding to this

temporary, look.up plants code because the Destination Analysis recognised

denoted values as belonging to REG. In a different language with denoted

values not in REG, the look up request will not plant any code, this would

be signalled by the absence of the .dest.Q construction, declare plants

code if the object to be declared is contained in a run-time temporary

place.

In 'dynamically' bound languages, the global symbol structure has to be

maintained at run time, hence, all operations of 'statically' bound

languages, which maintain a compile-time global symbol structure, have to

plant code to maintain a similar one at run-time. These operations are those

- 25 -

dictated by the same primitives declare, look.up, reset and by the

statement: let old.env=this.env.

This mechanism to eliminate the environment is applicable, provided

declarations are block structured and environments are used in such a way

that it is not the case of two different environments accessible at the same

moment. It can only be applicable when one single global symbol structure

can represent the whole environment. If such a condition does not hold, then

transformations will have to preserve the environment as one more parameter

to every code generation procedure.

2.4.3 Optimising Transformations

Optimisations are not essential, but strengthen our main objective of

generating a CGP which is efficient and usable. In Snapshot 2.6 we can see

that the CGP relies on a 'tree-weighting' algorithm [Bor79] to allocate fast

registers (if first.reg is seen as such, and not as an activation record

pointer).

2.4.4 BCPL

Finally, an interface from a syntax analyser provides the syntactic

information to rename node references with the appropriate names or

selectors. Also at this stage we rename curly functions and domain names.

The final version is shown in Snapshot 2.6. It can be successfully compiled

in BCPL, and, if provided with a machine interface and syntax analyser it is

a compiler for the Lambda Calculus.

- 26 -

__________ Snapshot 2.6: The Lambda Calculus. BCPL___________________
let trans.E(node).dest.(reg) be switchon type'node into by RA.l (2.6.1)
{ case T..Ident:

look.up(node).dest.(reg); endcase by RA.1/twice (2.6.2)

case N2..Abstraction:
{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code - forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, pl~node)
trans.E(p2~node).dest.(first.reg)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

}; endcase by R8.2, RA.1/3 times, RA.2/5 times (2.6.3)

case N2..Application:
trans.E(pl~node).dest.(reg)
test weight~p2*node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2~node).dest.(reg)
trans.call(dmp.loc, reg).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2*node).dest.(nxt)
trans.call(reg, nxt).dest.(first.reg)

}; endcase by R9.1, RA.1/5 times, RA.2/3 times (2.6.4)

CHAPTER 3

State

In Chapter 2 we have introduced the production system that formalises the

transformation process by which we will produce the code generation

processes, but no transformation rules were described. In this chapter we

start describing the correspondence that is the concern of this thesis. We

will consider a simple language of flow diagrams based on [Sto77] Table 9.1,

as reproduced in Snapshot 3.1 below.

The main topic of this chapter will be the State Analysis. However, in order

to place in context such analysis we have to prelude it with the

Normalisation analysis and postlude it with Syntactic and Semantic

transformations. So in effect we will define all transformation rules that

allow us to transform the original specification (in the source metalanguage

WFF) to the final CGP (in WFF_). s t

In the semantic specification of Snapshot 3.1, the state has been explicitly

written everywhere; even where it can easily be eliminated. This can be

achieved, for example, by use of the composition operator in (3 .1.3) or by

use of the 'star' operator in (3.1.4) to (3.1.6) and (3.1.10). This short

hand version will be analysed shortly, once we have introduced the

transformations to perform state elimination when explicitly used.

Note that although there are no commands producing side effects, the

specification is designed as if there are. In the following sections we will

enlarge the language with assignments. For the moment, to avoid clustering,

we limit our analysis to the equations listed below.

- 28 -

Snapshot 3.1: Algebraic Language of Flow Diagrams. Original Specification
Syntactic Categories
c :Com.
e :Exp.

Syntax
c ::= Dummy | If e Then c^ Else c2 | c^;c2 I While e Do c^ |

c. Repeatwhile e
e ::= True | False | If e^ Then e2 Else e^

Semantic Domains
t:T=[{ TRUE } + { FALSE }].
s: S.
c :C=[S > S].
W=[S > T].

Semantic Domains of 'Interest'
REG=W.
STA=S.

Semantic Equations
C :[Com > C]. (3.1.1)

C[Dummy]=
>s.s. (3.1.2)

C[c.;c„]=
>s.CLc2](C[c1]s). (3.1.3)

C[If e Then c. Else c„]=
>s.E[e]s>C[c1]s,C[c2]s. (3.1.4)

C[While e Do c.]=
Fix{)tcs.E[e]s>c(C[c^]s) ,s}. (3.1.5)

C[c. Repeatwhile e]=
Fix{>cs.{^s'.E[e]s'>cs',s'}(C[c^]s)}. (3.1.6)

E :[Exp > W]. (3.1.7)

E[True]=
Strict(>s.TRUE). (3.1.8)

E[False]=
Strict(^s.FALSE). (3.1.9)

E[If e Then e„ Else e.]=
>s.E[e1]s>E[e2]s,E[e3]s. (3.1.10)

registered values
states

truth values
machine states
command values
expression values

commands
expressions

- 29 -

3.1 Normalisation

In Snapshot 3.1, we observe that C and E are recursively defined by cases

over their different syntactic alternatives; This isolates, for each

alternative, a semantic value. From the domains to which these values belong

and from the concrete semantics, we wish to discover code generation

actions. Because of the nature and structure of code generation, these

actions will each be associated with a different syntactic construction; a

different node of a parse tree. It seems then that the definition by cases

over the different syntactic alternatives is an appropriate structure both

for semantic definitions and code generation. But the form of a simultaneous

set of mutually recursive equations can be algorithmically expressed by a

set of mutually recursive procedures. In this case there are two semantic

valuators, hence two procedures. Preserving this structure, we will

transform the sequence of equations into two let declarations, each followed

by a switchon statement selecting similarly by cases. To do this, we need to

restrict equations to be homogeneous in their parameter lists, each case

must be written with the same number of parameters. A pre-processor could be

easily defined to automate this process, but this is not our main concern.

We will assume that equations are homogeneous in this way and formalise this

transformation by the following conversion:

if n>l
let v node p be
switchon type'node into
{ case [s^]: e^; endcase

[Rl.l]
case [s]: e ; endcase j n n

if n=l
let v node p be ê

v[s1]p=e1.
• •
v[s]p=e . n r n

Next, two transformations which are not more than syntactic 'de-sugaring'.

- 30 -

Snapshot 3.2: Algebraic Language of Flow Diagrams. Normalisation
let C node be switchon type~node into
{ case [Dummy]:

^s.s; endcase

by Rl.l

by Rl.l

(3.2.1)

(3.2.2)

case [c^jc,]:
>s.C[c2]CC[c1]s); endcase by Rl.l (3.2.3)

case [If e Then ĉ Else c^]:
>s.E[e]s>C[c1]s,C[c2]s; endcase by R1.1 (3.2.4)

case [While e Do c.]:
Fix(^c.)fs.E[e]s>c(C[c1]s),s); endcase by Rl.l, R1.2 (3.2.5)

case [c. Repeatwhile e]:
Fix(\c.>s. (Xs' .E[e]s'>cs' ,s')(C[c^]s));

}
endcase by Rl.l, R1.2 (3.2.6)

let E node be switchon type^node into
{ case [True]:

StrictQs.TRUE); endcase

by Rl.l

by R1.1

(3.2.7)

(3.2.8)

case [False]:
StrictQs.FALSE); endcase by Rl.l (3.2.9)

case [If e. Then e„ Else e^]:
>s.E[e1]s>E[e2]s,E[e3]s; endcase by Rl.l (3.2.10)

The first one is required for the example language of this chapter , however

the second one is introduced now, but only required later. A cross reference

of rule numbers and the pages where they are defined and used is given in

Appendix B.

Hp.e => ^i»^P• e [R1.2]

e^ Where p=e^ => { let p=e1 ; ie0 } [R1.3]

Note that the Where construction above, is a WFFg expression, and not a

condition.

These transformations are the first step towards a translation into BCPL.

Semantic equations are written in a mathematical metalanguage, and we have

- 31 -

just projected an image, of a valuator's sequence of equations, into a

procedure selecting by cases over one of its parameters. Snapshot 3.2 shows

the shape of the semantic equations after these transformations, they are

tagged with the transforming rule number.

3.2 State Analysis

When analysing languages in a semantic world which includes a 'machine

state it is important to realise the distinction between 'compile-time' and

run-time activities. In an early paper, C. Strachey pointed out the

distinction between:

L[e »e ,e]s = L(if(R[e1]B)<[e9],[e,]»s.
and 1 2 3

Ltel>e2’e3]s = if(R[e1]s)<L[e2],L[e3]>s.

"...the first expression, in which the choice is made
between alternative [e] 's to translate and run, corresponds
to an interpretive or "translate as you run" scheme, while
the second, in which the choice is between already
translated operators, corresponds to the more common scheme
of separate compiling and running phases." [Str66]-p206

These two equations define precisely the same value, however, C. Strachey

was aware that it is possible to give two different (algorithmic)

interpretations to the concrete semantics, one corresponding to an

interpreter, the other to a compiler.

Our primary objective is to analyse the relationship between a semantic

specification and an associated code generation process, hence we are

interested in the second form. Moreover, we are interested in completely

splitting those actions that correspond to a compiler from those that

correspond to the generated code. Consider:

- 32 -

M
C
H

[PRO » [STA » STA]]
[PRO » COD]
[COD > [STA > S T A]]

Where M is the semantic function abstracting the meaning of a program p:PRO

in a language with state s:STA. C is a compiler producing some code c:COD,

which is in turn 'run' on the hardware of a particular machine H. We clearly

require M=H o C. Hence, a compiler performs an action that ends up with a

representation of the [STA ^ STA] function. The state analysis uses this

observation, so that each equation provides a function in [STA » STA] for

each syntactic alternative. The concrete semantics thus is a representation

of a [STA > STA] function and successive refinements transform it into the

code generator, which as we saw above produce, in turn, such a

representation; namely the code.

3.2.1 No Copies of the State Allowed

Before starting with the analysis refered to above, we have to restrict the

use of the state. It is very easy to write semantic equations that force

copying the state, for example imagine a definition of sequencing like:

C[c0 ;c1]s=(>s'.C[c1]s)(C[c()]s). This equation specifies that both [cQ] and

[c] must be evaluated in the same state s. This implies copying the side

effects of [cQ] represented by s'. With the hardware configuration of todays

machines, this is a very expensive operation (although there are experiments

like the 'highly reliable' system of the University of Newcastle [Ran75]),

and as J. Stoy points out:

"...The semantics of this would involve more than the
'single thread' treatment of s that we practise in the
present equations; it is of course expensive in memory."
[Sto77]-p231

Hence, we will not consider languages whose implementation involves

- 33 -

maintaining a copy of the state. This is a pre-condition of the

correspondence that we are describing.

We are now ready to continue analysing the simple language of flow diagrams.

We will develop, first, a sequence of transformations to eliminate the

state. This transformation process works by 'brute force', it can be applied

provided we ensure that the programming language under scrutiny does not

require its implementation to maintain a copy of the state. Secondly, we

will develop an alternative method: rewriting the semantic equations by

structuring' the state with appropriate operators and primitive functions.

The state will, then, never be explicitly used in any semantic valuator. The

associated transformations will follow the structure of the new operators

and primitive functions, and hence this second method will be shown

preferable. However, both methods will result in BCPL programs which are, in

effect, equivalent. The only differences are the primitive procedures

introduced by the transformation process (PI), in place of the procedures

(P2) which correspond to the primitive functions introduced in the semantic

specification. Primitive functions in the original specification are

preserved through the the transformation process and appear as primitive

procedures in the target CGP. Under the same interpretation of PI and P2,

both methods produce equivalent code generators.

3.2.2 First Method - Elimination

We first observe that this language fulfils the pre-condition described

above; there are no copies of the state; it is passed around as a 'single

thread'. But note that to say so means that we have to explicitly look at

every expression involving a state. There are five ways that it is used,

- 34 -

namely: identity, abstraction, application, conditional and as a strict

abstraction. We will consider each one in turn:

Identity: The identity function specifies that the state must be left

exactly as it is, this is a trivial case in that it implies that no code is

generated. We indicate this by an empty block:

when i:STA >i.i => {} [R2.1]

Abstraction and Application: Abstracting on the state, means that the body

of the abstraction will perform an action in a new state, which will be

produced by some code previously generated, it is not the concern of the

compiler to look at the state, but simply to generate the appropriate code

that will act in the new state, hence we directly eliminate such an

abstraction:

when i:STA >i.e => e [R2.2]

States passed as parameters are either directly eliminated if they are

simple variables; or associated with blocks of code if they are expressions:

when i:STA e^i => e^ [R2.3]

when e:STA e^e => { e In COD; e^ } [R2.4]

COD is an 'internal' domain of interest associated with code structures. It

is defined in terms of the 'user defined' domains of interest STA and ANS:

COD = [[STA>STA] + [STA>ANS]] [Dl]

In this case COD is used in a domain redefinition:

e In D = denotes a change of [D2]
functionality

We will see later how where clauses look for this domain when a code

structure is required.

Our discussion has and will continue to use the terms 'function' and

- 35 -

functionality with regard to the objects and properties of a denotational

definition. Since our system of productions is manipulating the semantics

concretely - that is as text - we see that it is committed to an

algorithmic, rather than functional, reading of the specification. So,

strictly, we should perhaps say 'procedure' for 'function' and 'data-type'

for 'functionality'.

Why these transformations? Our interest is to discover the form and

structure of a CGP. The semantic specification abstracts the machine

configuration as a state to state function. For example:

s:S=[I* + 0*]. States
Input Values

 ̂ Output ValuesRead:[S » [I x S]].
Write:[0 > S > S].

Under the above definitions, a concrete semantic expression might involve

sub-expressions like: Read(s) or Write(o)s. The corresponding statements in

the associated code generation procedures will not need the state variables.

Under the restriction of one single state thread, the code CGP does not

require that reference whatsoever. The semantic specification is abstracting

up to a run-time activity; the CGP, however, up to a code generation stage.

The two sub-expressions above, after the application of the R2.3 will look

respectively as: Read() and Write(o).

Conditional: If a state variable is used as one of the branches of a double

arm conditional we can eliminate that branch turning it into a null block:

when i:STA e ^ . i => e>e1>{} [R2.5]

when i:STA e M ^ => e M } ^ [R2.6]

Note that (apart from the trivial case of both branches selecting the same

- 36 -

_____Snapshot 3.3: Algebraic Language of Flow Diagrams. State Analysis______
let C node be switchon type^node into no change
{ case [Dummy]:

{}; endcase by R2.1 (3.3.2)

case [c.;c„] :
Ctc^; Cfc2]; endcase by R2.2, R2.3, R2.4 (3.3.3)

case [If e Then c. Else c„]:
ElejKlCj^] ,C[c2J; endcase by R2.2, R2.3/3 times (3.3.4)

case [While e Do c.]:
Fix(>c.E[e]>{ C[c]; c },{}); endcase

by R2.2, R2.3/twice, R2.4, R2.5 (3.3.5)

case [c Repeatwhile e]:
Fix(>c.{ C[c.]; E[e]>c,{} }); endcase

by R2.2/twice, R2.3/3 times, R2.4, R2.5 (3.3.6)
}

let E node be switchon type~node into no change
{ case [True]:

TRUE; endcase by R2.2, R2.7 (3.3.8)

case [False]:
FALSE; endcase by R2.2, R2.7 (3.3.9)

case [If e. Then e„ Else e„]:
E[e^]^E[e2],E[e3 f; endcase by R2.2, R2.3/3 times (3.3.10)

state variable) it can not be the case that both branches select a variable

as this means maintaining a copy of the state.

Strict: A strict abstraction on the state implies that if that function is

applied to an improper state the result should also be improper. This means

that nothing can be said later about it. This is, in general, what happens

when a program fails due to an improper use of the state. For example, when

a command fails to terminate, it is up to the hardware to tell whether or

not the state can be examined (through a dump for example). It seems then

natural to assume that such a strict function does not concern the compiler,

it is a hardware activity. To assume the contrary, means that appropriate

- 37 -

instructions will have to be planted to 'run-time check' whether the state

is proper or not. Such a check is too expensive to be done by software, we

prefer to rely on the hardware. This implies a condition on the form of the

input semantics; they are always strict on the state. So when the predefined

WFFg identifier _Strict is explicitly used in a state abstraction we can

directly eliminate it, defining:

when i:STA Strict(>i.e) => >i.e [R2.7]

Having defined the transformations that are required to eliminate the state,

we apply them to Snapshot 3.2 obtaining Snapshot 3.3.

3.2.3 Second Method — Structuring

The method outlined above is rather dangerous, in the sense that there is no

check to detect that the 'single-thread' condition holds. Also as J. Stoy

points out:

"...The absence of the symbol s from the equations ... helps
to emphasise that we must normally ensure that the 'same'
state s is not used at two arbitrary separated points in a
formula: that is to say, we must avoid defining the
semantics so that implementation involves making a copy of
the state of the machine, which is not economically
feasible." [Sto77]-p231

Definitions: We first introduce two operators which were not discussed when

describing the source metalanguage WFF .

• c •
f
g
d D

[[[D>D.]x[D >D„]]>[D>D„]]
[D>D] 1 Z 2
[d 1>iS2]

(f o g)d g(fd) [D3]

This operator is composition. We prefer this form, because we wish to read

equations from left to right. The other composition operator (o), forces one

- 38 -

to visually scan twice doing two passes over an equation. Some authors (see

[Ten76]) denote this form of composition with a semicolon, hence there is an

association with the sequencing operator of some programming languages (like

most ALG0L60 offspring). We will interpret this operator as sequencing under

certain domain configurations.

o is normally used for commands which are only involved in a COD

transformation. For expressions which produce a value (without side effects)

we define:

[[[D >D]x[D»[D >D]]]MD,»DJ]
for any D^ and D^- But not DCSTA

f : [D » D]
g : [D > [D > D]]

d : D
(f+g)d{ = gCfd)d [D4]

D may not be a state, to avoid any state saving, ô and + eliminate the

explicit use of the state of (3.1.3) to (3.1.6) and (3.1.10). For the rest

we need two primitive functions, one is the identity function on the state

which is a predefined WFFg identifier, defined by:

Is : [STA>STA]
Is = Strict(^i.i) [D5]

The second named Load replaces the use of Strict and it is defined as a

primitive function in the semantic specification of Snapshot 3.4.

Our treatment of predefined functions (like Is) and defined primitives (like

Load) leaves their algorithmic interpretation to the machine interface. This

is a way to 'hide' implementation details and strategies, avoiding becoming

too involved in crucial decisions. Compare this to the explicit use of the

- 39 -

Snapshot 3«4; Flow Diagrams State

Semantic Primitive
Load:[T > W].
Load=

>t.Strict(>s.t).

Semantic Equations
C : [Com > C].

C[Dummy]=
Is.

C[c ;c]=
C[c1 J o_ C[c2].

C[If e Then c. Else c_]=
E[e] + >t.t?c[c1],cfc2].

C[While e Do c.]=
Fix{>c.{E[e] +>t.t»C[c] £c,Is}}.

C[c. Repeatwhile e]=
FIx{>c.{C[Cl] o E[e] + >t.t»c,Is}}.

E:[Exp > W].

E[True]=
Load TRUE.

E[False]=
Load FALSE.

E[If e^ Then e Else e„] =
Ele^ + >t.t?E[e2],EIe3].

function Strict in the previous method. Hence, structuring with primitive

functions is a way of preserving, throughout the transformation process, the

meaning specified by the original semantic definition.

In Snapshot 3.4 we show the semantic equations for the same simple algebraic

language of flow diagrams using the new operators and primitive functions.

Note that the state is never explicitly used in any semantic equation. It is

only used in the primitive functions or implicitly in the operators. This

-Structured. Original Specification____
Modifications to Snapshot 3.1

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.6)

(3.4.7)

(3.4.8)

(3.4.9)

(3.4.10)

- 40 -

helps to emphasise, but does not guarantee, the absence of expressions

involving a copy of the state. In a language like this one a construction

potentially producing side effects on the state, used in a construction

which does not produce a side effect, may require copying the state. For

example: suppose we embed a command, which has side effects, inside an

expression, which has not, and define:

e ::= c "In" e | .. •
E[c "In" e]=C[c] o_ E[e].

Discovering this, and any other pathological case, means proving by

induction that the state is consistently used in every possible sub

expression. We are assuming, as a pre-condition on the input semantics, that

such mixed expressions do not occur. We do not pursue this matter further.

We now consider the necessary transformations for the structured version.

Identity: Firstly, a transformation for the explicit use of the identity

function on the state.

Is => {} [R2.8]

Reversed Composition for Commands: Secondly, the association of £ with

sequencing is made only in the case that the first expression produces a

side effect (a COD function). However, if the first expression only reads

the state ([STA>D]) then we associate £ with application:

when e„:[STA>D] e o e => C [R2.9]
where C°= { e ; e } ¥f D ±STA or D^ANS (i.e: e^COD)

C = e^eQ In D ^ otherwise

0 is a generic operator. In the particular instance of

.o.:[[CODx[STA»D2]]»[STA»D2]] it can be understood as specifying the link

between two blocks of code. This becomes even more evident when D2=STA or

- 41 -

D2=ANS, in which case .o_.:[[CODxCOD]»COD].

Composition for Expressions: Finally, +, which differs from o in the value

that is passed across the boundary of the two blocks of code, hence it is

associated with application:

e 0 ± el => (ei In [D>D?])(en In D) [R2.10]
when for any domain D and D£ eQ:[STA»D] and e ^ [D?[STAj>-D2]]

+ is a generic operator, in the particular instance of

.+.:[[[STA>D]x[D>[STA>D2]]]>[STA>D2]] it links two blocks of code; The first

block produces a value which is in turn passed to the second.

As an example, here is how we analyse the while-loop:

State Elimination:
Fix(>cs.E[e]s»c(C[c]s),s) From (3.1.5)
Fix(>c.>s.E[e]s»c(C[c]s),s) By R1.2-(3.2.5)
Fix(>c.*s.E[e]sM C[c]s; c },s) By R2.4
Fix(>c.>s.E[e]M C[c c },s) By R2.3/twice
Fix(>c.>s.E[e]M C[c]; c },{}) By R2.5
Fix(>c.E[e]»{ Cl^j; c },{}) By R2.2-(3.3.5)

Structuring the State:
Fix(>c.(E[e] + Xt.t>C[c.] £c,Is)) From (3.4.5)
Fix(>c.(E[ej + 3tt.t>C[c] o_c,{})) By R2.8
Fix(>c.(E[e] + >t.t>{ C[c.]; c },{})) By R2.9
Fix(>c.(>t.t>{ Clcj]; c },{})(E[e])) By R2.10-(3.5.5)

An implicit domain transformation, which is not shown in our snapshots, is

the change of functionality of all domains (data-types) involving ^ £!TA or

ANS. For example: W=[S>T] changes to W'=T. In effect the state 'disappears'

or is replaced by COD, like in: C=[S>S] changed to C'=COD. This can only by

done under the pre-condition which rules out semantics involving copies of

the state. Note that such changes are necessary to allow the transformation

process to continue discovering code generation actions. For example, what

- h i

ts the functionality of the sub-expressions ReadQ and Write(o), defined in

section 3.2.2? We can but not choose to say that Read:[S > [I x S]] and

Write:[0 ^ S ^ S] any longer. To be consistent we have to associate them

with the new domains (data types): Read:[[] > [I x COD]] and

Write:[0 ^ COD], which are redefining Read as the code generation procedure

with no parameters which should plant code to read a value, and Write as

another one to plant code to write one. In fact Read is not in that domain,

our system will redefine it as Read:I, and the Destination Analysis (to be

described below) will transform Read() to Read(reg) with Read:[REG > COD]

indicating that Read is a procedure which generates code to read a value

into the destination indicated by its parameter.

In Snapshot 3.5 we show the result of applying to the structured version of

our current example language all transformations corresponding to the

Normalisation and State Analysis. Note that the only differences between the

unstructured Snapshot 3.3 and the structured Snapshot 3.5 are the absence of

the function Load in the former and a number of extra abstractions in the

latter. We could define a transformation to perform beta-reduction; in this

case it is possible. But in some other cases we can not do such a reduction.

In the Destination Analysis below, we will explain why we can not perform

beta—reduction, and we also comment on the significance of the differences.

- 43 -

Snapshot 3.5; Flow Diagrams State-Structured. State Analysis
let C node be switcnon type^node into ------------ hv R1 1--
{ case [Dummy]: ^ “ t0 by Rla

{}; endcase by R1>1> R2>g (3>5>2)
case [c1;c]:

C[cJL]; Cfc2]; endcase by Rla> (3.5.3)
case [If e Then Else c]:

(>t.t>C[c1],C[c2])(E[e]J; endcase by Rl.l, R2.10 (3.5.4)
case [While e Do c.]:

Fix(>c.(^t.t>{ C[Cj]; c },{})(E[e])); endcase
by Rl.l, R2.8, R2.9, R2.10 (3.5.5)

case [ĉ Repeatwhile e]:
Fix(^c.(^t.t>c,{}){ C[Cj]; E[e] }); endcase

by Rl.l, R2.8, R2.9, R2.10 (3.5.6)

let E node be switchon type''node into hv ri 1 ri c 7\{ case [True]: y U-5./J
Load TRUE; endcase by Rl.l (3.5.8)

case [False]:
Load FALSE; endcase by R1.1 (3.5.9)

case [If ex Then e Else e]:
(>t.t>E[e2],E[e3f)(E[ei]7; endcase by Rl.l, R2.10 (3.5.10)

3.3 Syntactic Transformations
3.3.1 Proceduring

Firstly, the functions are curried, but procedures are parametric. According

to the Oxford school's tradition, functions are defined as curried as

possible. There is no reason why they could not be defined by equivalent un

curried functions. In fact, the DS of the programming language [ADA80] is,

from the start in this form.

Why do we have to un-curry? If we wish to give an algorithmic interpretation

to the concrete representation of semantic functions, then it seems natural

to use a form, which is in line with those defined in our target programming

- 44 -

language. For this reason we introduce the following conversions:

let vij...^ be C => let vUj,..., be C [R3.1]

eOel***en ='> eo^el» •••» en) [R3.2]

3.3.2 Applied Occurrence of Abstractions

Secondly, the equivalence between the application of lambda abstractions and

BCPL's let declarations, is formalised as follows:

(>i.e)(e1) => { let 1=6^ e } [R3.3]

(>i.e)(e^)(e2) => { let i-e^j e(e2) } [R3 .4]

when not i:COD (>i.e){C; e ^ => C; { let 1=6^ e } [R3.5]

Note that if the condition of R3.5 fails, then either R3.3 or R3.4 is

applied. The following shows the syntactic transformations for the while-

loop as left by the State Analysis:

State Elimination:
Fix(>c.E[e]»{ C[c]; c },{}) From (3.3.5)
Fix(\c.E([e])>{ C([c^]); c },{}) By R3.2/3 times

Structuring the State:
Fix(>c.(>t.t>{ C[c.]; c },{})(E[e])) From (3.5.5)
Fix(>c.(>t.t»{ C([c]); c },{})(E([e]))) By R3.2/3 times
Fix(>c.{ let t=E([e}) ; t>{ C([Cj]) ; c },{}}) By R3.3-(3.6.5)

Note that R3.2 is applied regardless of the brackets which are printed

because of precedence reasons. So a ene. construct of WFF like Fix(e), is
U X s

transformed by R3.2 to the same Fix(e), but now a E(P)A of WFF^. Also note

that has lower precedence that anything else.

Before embarking on the semantic transformations, let us observe that the

result of transformations R3.1 to R3.5, as described in Snapshot 3.6, is

still a Standard Denotational Specification, written in an un-curried form

with (more or less) the original domains. Alternatively, it can be regarded

— _naPs^°t 3.6: Flow Diagrams State-Structured. Syntactic Transformations
let C(node) be switchon type^node into by R3.1 (3.6 1)
{ case [Dummy]: no change

case [c,;c2] :
CUc^); C([c2]); endcase by R3.2/twice (3.6.3)

case [If e Then c Else c„]:
{ let t = E([e]); t>C([c^]),C([C2]) }; endcase

by R3.2/3 times, R3.3 (3.6.4)
case [While e Do c.]:

Fix(^c.{ let t = E([e]); t>C([c^]); c,{} }); endcase
by R3.2/3 times, R3.3 (3.6.5)

case [ĉ Repeatwhile e]:
Fix(^c.{0 C([cj]); { let t = E([e]); t>c,{} }0); endcase

 ̂ by R3.2/3 times, R3.5 (3.6.6)

let E(node) be switchon type~node into by R3.1 (3.6.7)
{ case [True]:

Load(TRUE); endcase by R3.2 (3.6.8)
case [False]:

Load(FALSE); endcase by R3.2 (3.6.9)
case [If e Then e Else e„]:

{ let t = E([e^]j; t>E([e2]),E([e^]) }; endcase
by R3.2/3 times, R3.3 (3.6.10)

- 45 -

as something akin to store semantics [MaS76]. We could have started with a

version that looked similar to this one, like P.Mosses's DSL [Mos79], and

then derived the store semantics applying the mechanism developed by [MaS76]

as described in [Sto77]. To avoid the need of presenting yet another

mathematical metalanguage, we preferred not to do so, starting with the

version in [Sto77].

Recently, R. Sethi introduced PLUMB programs [Set82], which are also

something akin to store semantics. In PLUMB the state is never explicitly

written in any semantic equation, this is done by means of a mechanism

called a 'pipe', which extends function composition. R.Sethi has shown that

- 46 -

'pipes' are suitable to express the control flow aspects of sequential

languages. In this sense, if one starts directly with a store semantics then

our State Analysis is not required.

The State Analysis has been applied prior to the Syntactic Transformations

only for convenience, because it is easier to eliminate the application of a

curried function than to eliminate the parameters of an un-curried

procedure. In this respect, the State Analysis is part of the semantic

transformations which we describe now.

3.4 Semantic Transformations

What can we say now about this specification (Snapshot 3.6)? It looks very

much like an interpreter. In fact we can regard it as an definitional

interpreter (in the sense of [Rey72]) written in a metalanguage which looks

as much like a programming language as a mathematical system of equations.

If we are able to discover, from the specification, something more concrete
we

about the way that semantic objects are handled, then^will be able to say

something about how we can implement a compiler for the language in

question. The difference between such an interpreter and a compiler, is that

the latter is characterised by a process of translation, a generation of an

intermediate or final representation, i.e: the target code. It actually does

not matter, whether this code is later, either run on the hardware of a

particular machine, or if it is interpreted by software. The CGP is the

primary object of our analysis. So, what are the characteristics of this

code?

- 47 -

3.4.1 Destination Analysis

Let us consider the form of the specification that manages intermediate

values, obtained while evaluating sub-expressions. The interpreter seems to

hold these values in variables, but the CGP will not see the values, it is

only at run time when values will be produced, and handled by the code. The

compiler's activity is to define where at run time, these values will be

kept. Hence, here is our first semantic transformation:

let v(D) be C I => | let v(D).dest.(reg) In COD [R5.ll
when v(D) :REG __| |__be C

REG is a domain of interest. In the example language that we are considering

in this section REG=W and W=[S»T]. After the State Analysis W'=T so that now

REG-W =T. The transformation above indicates that every function, producing

a registered value (in REG) as a result, will now have an indication for the

destination of the resultant value. The variable reg is used to keep a

description of the destination but there is no indication of what this

destination is. It might be either a register descriptor or a level+offset,

describing a position in an activation record. Note that expressions that

were in [D>REG] (any D), now are in [[D x REG] > COD].

We also need the counterpart to R5.1:

let v(D) be C => let v(D) be [first.reg/reg]C [R5.2]
when not v(D):REG

Where first.reg is either a free constant or a free variable, containing a

description of a place for run time temporary values (respectively the first

available register or the start of the corresponding activation record's

workspace).

- 48 -

Function calls are converted in two ways depending on the context in which

they appear. If the result of a function is immediately bound to a variable

then we make a register name out of the variable name. Otherwise, the

destination is the same variable which was defined in R5.1:

when e(P):REG e(P) => e(P).dest.(reg) In COD [R5.3]

{ let i=e(P); C } | => | { e(P).dest.(i) In COD; C } [R5.4]
when e(P):REG __| |__rename i=>(i=ajt)>reg+k, reg

Note that in R5.4, the destination reg+k is made out of the decoration 'k'

of the identifiers name. The effect of this is that the register allocation

depends on the decoration of names (with digits) of the original

specification. It might be argued that this is not desirable; that the

transformation rules should find out which registers must be allocated,

instead of forcing such issues to depend on the textual form of the semantic

specification. However, this method allows the control of register

allocation at the level of the semantic specification. We have opted for

this general approach, allowing 'user control' of register allocation. This

is why, our semantic equations contain some explicit abstractions which seem

not to be necessary. In the introductory example (section 2.4), the equation

for an application in the Lambda Calculus (2.1.4) is expressed as:

E te1e2]p=(>ee'.(e|F)e')(Ete1]p)(E[e2]p).

Instead of the equivalent form: E[e e2]p=((E[e^]p)|F)(E[e2]p).

Because of this 'user controlled' register allocation technique, we can not

apply beta-reduction (see section 3.2.3 above). Another reason for not

applying beta-reduction, is that the applied occurrence of abstractions,

transformed as let declarations, helps to avoid re-evaluation. In general,

the argument to an applied occurrence of an abstraction will be an

expression with corresponding code generation process. We do not wish to

- 49 -

substitute such an expression since this might result in a duplication of

the same code generation text, or worst even, a duplication of the same

generated code. The reader must remember that we are generating the text of

a code generator expressed as procedures written in a programming language,

we are not 'implementing' the lambda-calculus by its reduction rules. The

only reason for beta-reduction would be to reduce the length of expressions;

but this reduction must not be to the detriment of the target CGP.

Both these issues, variable naming to allow register allocation and explicit

abstractions, are implementation issues which have been pushed up to the

level of a Standard Denotational Specification. We believe that further

analysis, could show that these two features could be automated, and hence

not necessarily explicitly expressed at that level, and that the relevant

information could be extracted from a truly Standard Specification without

writing semantic equations with this sort of implementation detail. However

in Chapter 7, we explore the possibility of abstracting more important

issues at the level of a Semantic Specification, through a technique which

we call Implementation Denotational Semantics.

Let us return now to the Destination Analysis. If a function call involves

other calls amongst its parameters which produce values (in REG), then as a

result of R5.3 or R5.4, these values are indicated by a .dest.(E) construct.

In this case we make a sequence of statements, replacing the old parameter

by its destination register.

- 50 -

By symmetry we also define:

e(P, i) i => | e(P).dest.(i) In COD [R5.6]
when i:REG and P not null | |

Next, if we consider the language with the state written explicitly, as

shown in Snapshot 3.3, we need to load variables that appear either as

statements like in (3.3.8) and (3.3.9) or in a conditional's branch (not in

this example):

[R5.7]
{co; i; c } i

or |
=> 1 {CqJ 0;

1 or
C1 }

eo > i» e |
or |

=>
! G° \ Cr e2

not"?
> e , i |
: COD __|

=>
\ j C e b

, c
= trans.load(D0M(i),when i:REG and not

DOM : Exp»EXP
DOM(e:d) = E:EXP

where E = d if not d=[D^ + ... + Dn] for any Di and not e:L0C
E = domain.of(e) otherwise

[D6]

The primitive operation trans.load, will be used to indicate that a

particular value must be loaded into its destination. The reason for the

domain definition indicated by In, is to allow R5.3 or R5.4 to supply a

destination. For type checking purposes trans.load associates a type with

the destination. This type must be given as the first parameter. If the type

associated with the load is known at the moment of generation of the CGP

then the function DOM returns an identifier, otherwise it returns the

expression domain.of(e) so that the CGP would be able to determine the

particular instance of a type while generating code. Types are unknown when

they belong to an union domain or when the operation is to load the contents
f

of a location. Section 4.3.3 explores other type checking issues.

The actual code planted to load a value is not defined, it is up to the

interpretation of trans.load to define the precise code. For example, in

this simple example language, the only values that might be loaded are the

constants TRUE and FALSE. Using DEC-10 instructions and associating to these

constants respectively the values minus one and zero, trans.load(D..T,

TRUE).dest.(reg) might plant:

interpreting reg as
a fast register (reg=AC) an invocation record word (reg=//off)
SETO AC, 0 SETOM 0,//of f (BAS)

and trans.load(D..T, FALSE).dest.(reg) will plant similar code using the

instruction SETZ.

Order of Application: In R5.2, the expression [first.reg/reg]C does not make

sense unless we wait until all regs have been introduced by other

transformation rules. We solve this by applying the substitution once all

rules have been applied. Alternatively a substitution can be interpreted as

a call by need, i.e: whenever a rule inserts a reg within C, it is

immediately substituted by first.reg.

The order of application of rules is not determined. So the transformation

process can be understood as a non-deterministic process. However, in a

particular implementation, one can apply a specific order. For example, we

have opted for a syntax directed transformation, where the order of analysis

is directed by the structure of the abstract syntax in a left to right

manner.

Applying the Destination Analysis rules results in Snapshot 3.7.

- 52 -

_____Snapshot 3.7: Flow Diagrams State-Structured. Destination Analysis_____
let C(node) be switchon type^node into no change
{ case [Dummy]: no change
case [c^;c2]: no change

case [If e Then c. Else c„]:
E([e]).dest.(first.reg); first.reg»C([c.]),C([c„]); endcase

by R5.2, R5.4 (3.7.4)

case [While e Do c.]:
Fix(>c.{ E([e]).dest.(first.reg); first.reg»C([c]); c,{} }); endcase

by R5.2, R5.4 (3.7.5)

case [Cl Repeatwhile e]:
FixQc. { C([Cj]); E([e]).dest.(first.reg); first.reg»c,{} }); endcase

by R5.2, R5.4 (3.7.6)
}

let E(node).dest.(reg) be switchon type~node into by R5.1 (3.7.7)
{ case [True]:

Load(TRUE).dest.(reg); endcase by R5.3 (3.7.8)

case [False]:
Load(FALSE).dest.(reg); endcase by R5.3 (3.7.9)

}

case [If e. Then Else e^]:
E([e.]).dest.(reg); reg»E([e„]).dest.(reg),E([e„]).dest.(reg); endcase

by R5.3/twice, R5.4 (3.7.10)

3.4.2 Continuation Analysis

In this example language, there are no continuations, nevertheless in terms

of code generation, there are certain parts where jumps, to and from

different parts of the code will be produced. We will analyse the following

areas: variables as statements, conditionals, and the minimal fix point

finder.

Variables as statements: A variable denoting a code function might stand in

a block as a statement. This happened for example in the equation for a

while-loop (3.5.5), where R2.9 transformed the composition operator o into a

sequence of statements. Also, a variable denoting a code function might

stand in a conditional's branch, like in (3.7.6). These code variables are

- 53 -

interpreted as a need to jump:

{c0; i; cl }
or

when i:COD
or

e0 * el» 1

=>

=>

=>

{C0; C; c }
or

e0 * C’ e2 or
eD * el» C where C = t

[R6.1]

rans.jump.to(i)

Conditionals: We wish to evaluate the boolean part in a particular

destination (if it is not already a destination variable), and then check

the result, planting appropriate instructions to select the corresponding
path.

{ let econd.code=forward(COD)
let fcond.code=forward(COD)
C
trans.jump.if.false(i, fcond.code)
eltrans.jump.to(econd.code)
fix.here(fcond.code)
e2flx.here(econd.code)

__} where C = (e^i) > null, eQ

What is the meaning of forward and fix.here? Every time a forward reference

is made a CGP will have to take some actions. Different techniques are

possible, but at this stage, one does not wish to be committed to any

particular one. The primitives forward and fix.here, like all primitive

procedures and function introduced by the transformation process, can have

different interpretations, one can choose any of the well known techniques

to achieve the desired effect. For example: if one wishes to use a chaining

mechanism, these operations can be interpreted respectively as new.chain and

fix.chain. Alternatively, if one wishes to rely on the activity of a loader,

they can be interpreted as new.label and trans.label. The parameter COD to

forward is supplied for type checking (compile or run-time) purposes.

e0>el,e2

where e ^ e(P) .dest.(i)A
or e = i

when i:REG

- 54 -

This transformation rule is the most general way of transforming the

conditional, but by looking at its particular form, one can optimise the

CGP. For example, in (3.7.5) and (3.7.6), the false part is a null block {},

in this case some of the right hand side statements are unnecessary. Also,

in (3.7.6) the true part was a simple variable and a continuation, and as a

result of R6.1 it would now be an unconditional jump trans.jump.to. Instead

of jumping to fcond.code when the boolean part evaluates to false, we can

reverse the test—and-jump replacing the original trans.jump.if.false by

trans.jump.if.true. When the false part is an unconditional jump, we can

replace the fcond.code of trans.jump.if.false by the parameter of the

unconditional. Finally, if the true branch consists of an expression

involving continuations (like the examples of Chapter 5), then there is no

need for the forward—fix and jump to econd.code constructions. These, and

other similar observations, are formalised as follows:

e0 * el» e2 => C [R6.2]when (EOIsDes or EOIsIde) and i:REG
where C = { C ; C ; C ; C ; C ; C ; C ; C ; C }

Cj = NoEndCo > null, let econd.code = forward(COD)
C„ = NoFalse > null, let fcond.code = forward(COD)
C = EOIsIde » null, e
C^ = JumpRut(i, FalseCo)
C^ = Reverse > null, e^
C^ = NoEndCo > null, trans.jump.to(econd.code)
Cy = NoFalse > null, fix.here(fcond.code)
Cg = E2IsJmp > null, e„
C_ = NoEndCo > null,' fix.here(econd.code)
EOIsDes = ef=e(P).dest.(i)A
EOIsIde = e^=i
EllsJmp = e^=trans.jump.to(i^)
E2IsJmp = e =trans.jump.to(i)
E2IsNul = eZ={} Z
Reverse = E2IsNul and EllsJmp
NoFalse = Reverse or E2IsJmp
NoEndCo = E2IsNul or E2IsJmp or WillJump(e^)
JumpRut = Reverse > trans.jump.if.true, trans.jump.if.false
FalseCo = Reverse > i^, E2IsJmp > i„, fcond.code
HasCont(e)=TRUE if e contains continuations which will jump
HasCont(e)=FALSE otherwise

- 55 -

There is still more room for improvement. For example we have not considered

what happens when the true part is a null block {}, but this case never

happens in our examples so we will not pursue this further. Other

improvements relate to those forms of tests which can be translated with

skip instructions. We will wait until the examples require this feature.

Fix: The paradoxical combinator Y was introduced by J. Curry [Cur58] and was

discussed in relation to an operational semantics by P. Landin [Lan65]. In

relation to a DS, C. Strachey, in an early paper pointed out:

"...it does the same job as LABEL in LISP. Thus
(LABEL, c,(LAMBDA, (X), (S))) is equivalent to FixQc. ix. S) .
[Str66]-p213

The denotation of Y is the function Fix=>F.|_|nFn(Bot), Fix, a predefined

WFFs identifier, it is used both in (3.7.5) and (3.7.6). It is a generic

function whose interpretation depends on its functionality. In this case it

is used in expressions of the form: FixOc.c^, hence its functionality

belongs to [COD>COD]. FixOc.c^) denotates the COD function denoted by c^,

with c bound to the same. In implementation terms this means that FixQc.c^)

is denoting the instruction sequence forming the code of c ^ with c bound to

the same. The following transformation will implement this observation:

when i:COD Fix(>i.e) I => | { let i = here(COD); e } [R6.3]
__I |__rename i=>restart.code

In a similar fashion to forward and fix.here, the interpretation of here is

left open to implementation choice. If one wishes to use either a chaining

mechanism, or rely on the activity of a loader, then it can be interpreted

respectively as this.program.counter or trans.label

Applying these transformations we obtain Snapshot 3.8.

- 56 -

____Snapshot 3.8: Flow Diagrams State—Structured. Continuation Analysis_____
let C(node) be switchon type'node into no change
{ case [Dummy]: no change
case [c^;c2]: no change

case [If e Then c. Else c„]:
E([e]).dest.(first.reg)
{ let econd.code = forward(COD)
let fcond.code = forward(COD)
trans.jump.if.false(first.reg, fcond.code)
C([cx])
t rans.jump.t o(econd.code)
fix.here(fcond.code)
C([c])
f ix.ne re(e cond.code)

}; endcase by R6.2 (3.8.4)

case [While e Do c^]:
{0 let restart.code = here(COD)

E([e]).dest.(first.reg)
{ let fcond.code = forward(COD)
trans.jump.if.false(first.reg, fcond.code)
C([Cj])
trans.jump.to(restart.code)
fix.here(fcond.code)

}0; endcase by R6.1, R6.2, R6.3 (3.8.5)

case [ĉ Repeatwhile e]:
{ let restart.code = here(COD)
C([c])
E([ej).dest.(first.reg)
t rans.jump.i f.t rue(first.reg, res tart.code)

}; endcase by R6.1, R6.2, R6.3 (3.8.6)

let E(node) .dest. (reg) be switchon type''node into no change
{ case [True]: no change
case [False]: no change

case [If e. Then e„ Else e~]:
E([e]).dest.(reg)
{ let econd.code = forward(COD)
let fcond.code = forward(COD)
trans.jump.if.false(reg, fcond.code)
E([e2]).dest.(reg)
trans.jump.to(econd.code)
fix.here(fcond.code)
E([e]).dest.(reg)
fix.nere(econd.code)

}; endcase by R6.2 (3.8.10)

- 57 -

Snapshot 3.9: Flow Diagrams with Side Effects. Original Specification

Semantic Primitive
Load:[T » W].
Load=

>t.Strict(>s.<t,s>).

Semantic Equations

C[If e Then c. Else c„]=
E[e] *_ >t.t?C[c1],Clc2]. (3.9.1)

C[While e Do c,]=
Fix{^c.{E[e] *_ ^t.t>C[c^] o^c.Is}}. (3.9.2)

C[c. Repeatwhile e]=
Fix{^c. {C[c^J o E[e] *_ \t. t»c, Is}}. (3.9.3)

E[If e. Then e„ Else e„]=
EtejJ ^ >t.t?E[e2],EIe3]. (3.9.4)

3.5 Side effects

Consider now a similar language with side effects. It is based on [Sto77],

table 9.3. In Snapshot 3.9, we reproduce only those parts that differ from

the specification of Snapshot 3.4. Note that the redefinition of W, results

in every + being replaced by Except for the new equation for Load, these

replacements are the only modifications to the original semantic equations,

confirming once more that structuring the state with appropriate operators

leads to structured equations. We have to analyse this new operator at the

level of the State Analysis.

3.5.1 Reversed Star

The *_ operator, is the reverse of the star operator used by C. Strachey

[Str73] to abstract the meaning of a conditional:

w : W= [S > [T x S]]
Semantic Domain Modifications to Snapshot 3.4

expression values

- 58 -

f
8
d D

[D >[DxD J]
[d^[d2>d|]]

(f * 8)di [D7]

D may not be a state, to avoid any state saving. As for the composition

operator, we prefer the reversed form that allows us to read equation from

left to right. This operator is used for expressions with side effects.

Expressions produce, in general, a value and the side affect is a

modification of the state. As already explained in section 3.2.1, we are

only allowing one copy of the state at any given time. This means that in

e*e', *_ is carrying information which is not relevant for the process of

code generation. It is the code generated by e and e' that will carry out

this activity, and it will follow the same sequence of actions specified by

the appropriate transformation of e and e'.

As usual, we formalise a transformation with a conversion rule:

e0 * el => (en In [D»D])o(e In [»D]) [R2.ll]
when for any domains D, and eQ: [D^tDxSTAJ] and e^: [D>[STA?D3]]

is a generic operator, in the particular instance of

• *̂ .: [[D^>[DxSTA]]x[D>[STA>D3]]>[D^>D3]] it links two blocks of code. The

first block produces a side effect and a value which is passed to the second

block. In most cases D^=STA and D3=STA or D3=ANS, in which case it will be

trapped by R2.9. The rest of the transformations are the same as those for

the same language without side effects, and the final version does not

differ from the corresponding version for that language. This is to be

expected since, so far, the language has no explicit expressions with side

- 59 -

effects. For example, this is how we transform the while loop:

While loop with side effects:
Fix(Xc.(E[e] *)*t.t»C[c] o c,Is))
Fix(>c.(E[e] * >t.t>C[c7] o c,{}))
Fix(>c.(E[e] *_ >t.t»{ etc]; c },{}))
Fix(>c.(E[e] o >t.t>{ C[c:]; c },{}))
Fix(>c.(>t.t>{ CtcJ; c },{})(E[e]))

3.6 The Store

In order to analyse the relation between semantic equations producing side

effects and the corresponding procedures to generate code, we now define the

store as a function from identifiers to values. We add identifiers to the

syntactic categories of expressions, and assignments for generality both in

commands and expressions. Locations are introduced in chapter 7 where the

example language with environments provides the appropriate block structure.

Firstly, we consider the semantic equations of Snapshot 3.10 where the state

is explicitly used. Secondly, we will rewrite them by structuring the state.

We require new transformations only for the former and at the level of the

State Analysis.

3.6.1 Updating

A modification of the state occurs in both equations for assignment. The

store is modified in such a way that after the assignment, identifiers

denote the result of the right hand side evaluation. In the semantic

equations this indicated by the [/] construction, the code generator

requires a procedure trans.update which will generate a move to memory:

when i: STA => trans .update^, e^) [R2.12]

From (3.9.2)
By R2.8
By R2.9
By R2.ll
By R2.9

- 60 -

____Snapshot 3.10: The Store State-Unstructured. Original Specification_____
Extensions to Snapshot 3.9

Syntax
i:Ide. identifiers
c ::= i:=e • •
e ::= i | i:=e^ |

Semantics
s:S=[Ide > T]. machine states
C:[Com > C]. (3.10.1)

C[i:=e]=
E[e] * >ts.s[t/[i]]. (3.10.2)

E:[Exp » W]. (3.10.3)

E[i] =
3trict()*s.<s[i] ,s>). (3.10.4)

E[i:=e]=
E[e Ĵ *_ >ts.<t,s[t/[i]]>. (3.10.5)

3.6.2 Loading

Loading a value from the store is indicated by an application of the state.

This requires again the primitive procedure trans.load;

when i:STA i(e) => trans.load(D0M(e), e) In REG [R2.13]

3.6.3 Tuples

In all our examples, tuples have length of two. To simplify the analysis, we

will consider only tuples of this length. In this unstructured version, the

state is explicitly used in tuples, both as a single variable in (3.10.4)

and as an expression in (3.10.5). In the former case, we simple eliminate

such a variable, since, like the identity function of the state, it does not

convey any code generation information. In the latter, since only one copy

of the state is allowed, side effects can not occur in both tuple

expressions, so we can impose a particular (left to right) order of

evaluation, transforming the tuple to a sequence of two statements:

when i:STA <eQ, i> => eQ [R2.14]

- 61 -

_____Snapshot 3.11: The Store State-Unstructured. Destination Analysis
let C(node) be switchon type'node into by Rl.l, R3.1 (3.11.1)
{ case [i:=e]:

E([e]).dest.(first.reg); trans.update([i], first.reg); endcase
by Rl.l, R1.2, R2.2, R2.9, R2.ll, R2.12, R3.2/twice, R3.3, R5.2, R5.4
R5.6 (3 .11.2)

case ...
}

let E(node).dest.(reg) be switchon type^node into
by Rl.l, R3.1, R5.1 (3.11.3)

{ case [i]:
trans.load(Ide, [i]).dest.(reg); endcase

by Rl.l, R2.2, R2.7, R2.13, R2.14, R5.3 (3.11.4)

case [i:=e.]:
EQe^). dest. (reg)
trans.load(domain.of(reg), reg).dest.(reg)
trans.update([i], reg); endcase
by Rl.l, R1.2, R2.2, R2.9, R2.ll, R2.12, R2.15, R3.2/twice, R3.3, R5.3
R5.4, R5.6, R5.7 (3.11.5)

case ...
}________________

when e1:STA <eQ, ex> => { eQ ; ex } [R2.15]

Applying these transformations and all those required to bring it to the

level of the Destination Analysis we obtain Snapshot 3.11.

3.7 Structuring

If we now express the semantic equations without explicit use of the state,

rewriting the equations from Snapshot 3.10 to those in Snapshot 3.12, we

find that this time, there is no need to define any new transformation rule.

The problem is that, now, one has to supply the code for the primitives

Update and Conts, which can easily be done with the equivalent procedures

trans.update and trans.load supplied by our system. The corresponding

generation, also at the level of the Destination Analysis, is quite similar

to the one of the unstructured version, as can be seen in Snapshot 3.13.

- 62 -

_____Snapshot 3.12; The Store State-Structured. Original Specification _____
Modifications to Snapshot 3.10

Semantic Primitives
Update:[Ide > T > C].
Update[i]ts=
s[t/[i]].

Conts:[Ide > W].
Conts[i]s=
<s[i],s>.

Semantic Equations
C:[Com > C]. (3.12.1)

C[i:=e]=
E[e] *^Update[i]. (3.12.2)

E: [Exp > W]. (3.12.3)

E[i] =
Conts[i]. (3.12.4)

E[i:=e.]=
E[e^J *_ ̂ t.(Update[i]t o_ Load t). (3.12.5)

______ Snapshot 3.13: The Store State-Structured. Destination Analysis_______
let C(node) be switchon type~node into by Rl.l, R3.1 (3.13.1)
{ case [i:=e]:

E([e]).dest.(first.reg); Update([i]).dest.(first.reg); endcase
by Rl.l, R2.9, R2.ll, R3.2/twice, R5.2, R5.3, R5.5 (3.13.2)

case ...
}

let E(node).dest.(reg) be switchon type^node into
by Rl.l, R3.1, R5.1 (3.13.3)

{ case [i]:
Conts([i]).dest.(reg); endcase by Rl.l, R3.2, R5.3 (3.13.4)

case [i:=e] :
E([e^]).dest.(reg); Update([i]).dest.(reg); Load(reg).dest.(reg)
endcase
by Rl.l, R2.9/twice, R2.ll, R3.2/3 times, R3.3, R5.3, R5.4, R5.6

(3.13.5)

case
}

- 63 -

3.8 BCPL

In order to test and run our code generation phase, we also have to generate

a lexical analyser and parser. For these, we use two systems which also

generate BCPL procedures. For the former, we use LEXGEN [Suf78a], and for

the latter LL1 [Suf78b]. This syntactic phase builds up an internal

representation of the source programs in the form of a tree. From this

automatic generation, and with the help of a text editor FORM [Suf77], we

provide an interface to the code generation phase which defines the names of

each tree node. With this automatically generated interface, we associate a

tag or type to every [s] of a command of the form case [s]:C, and a

'selector' for every sub-expression in C of the same command.

Syntactic Alternative | Tag | Selectors
___________________________ I ___________ I pl p2 p3
Dummy |T..Dummy |
If e Then c^ Else c^ |N3..ConditionalCom |e c, c„
ci»c 2 IN2. .Sequence |c. c.
While e Do c |N2..While |e c
c1 Repeatwhile e |N2..Repeatwhile |c e1
i:=e IN2..Assignment |i e
True |T..True |
False |T..False |
If e. Then e„ Else e„ |N3..ConditionalExp |e e„ e
i J |T..Ident 1 2 3
i:=e' IN2..AssignmentExp |i e'

So that:

Every [s] | => | replaced by its appropriate [RA.l]
 I I_'tag' or 'selector'

Every 'curly' valuator v | => | respectively replaced by [RA.2]
and every domain d__| | trans.v and D..d

With this, we have completed all transformations. In Snapshot 3.14 we show

the final version of the unstructured version with side effects and

locations. It can be compiled successfully in BCPL and if provided with a

- 64 -

syntax analyser and machine interface, it is a CGP for this example

language. The only differences between the final version of the unstructured

version, against the structured one, are the primitives procedures. In the

former, the transformation process has inserted calls to the primitive

procedures trans.load and trans.update. In the structured version, the

primitive functions of the original semantic specification Load, Conts and

Update have been carried over to the final CGP, transformed to BCPL

procedure calls. Both Load and Conts correspond to trans.load since in our

'machine-configuration' loading and looking up memory are equivalent

operations. The equivalence between the two versions is then obvious, we

have to choose one to show the final version, we select the unstructured

version, to avoid having to include in the machine interface those three

primitives. All procedures inserted by the transformation process are

supplied by our system, but primitive functions of the original semantic

specification, corresponding to procedures in the final CGP, have to be

supplied, in the machine interface, by the user.

- 65 -

___________ Snapshot 3.14: Flow Diagrams State-Unstructured. BCPL____________
let trans.C(node) be switchon type'node into by Rl.l, R3.1, RA. 1 (3.14.1)
{ case T..Dummy:

{}; endcase by Rl.l, R2.8, RA.1 (3.14.2)
case N2..Sequence:

trans.C(pl node); trans.C(p2~node); endcase
by Rl.l, R2.9, R3.2/twice, RA.1/3 times, RA.2/twice (3.14.3)

case N3..ConditionalCom:
trans.E(pl~node).dest.(first.reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2"node)
trans.jump.to(econd.code)
f ix.here(fcond.code)
trans.C(p3~node)
f ix.here(econd.code)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/3 times, R3.3, R5.2, R5.4, R6.2
RA.1/4 times, RA.2/5 times (3.14.4)

case N2..While:
{0 let restart.code = here(D..C0D)

trans.E(pl~node).dest.(first.reg)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2~node)
t rans.jump.to(restart.code)
f ix.here(f cond.code)

}0; endcase
by Rl.l, R2.8, R2.9/twice, R2.ll, R3.2/3 times, R3.3, R5.2, R5.4, R6.1
R6.2, R6.3, RA.1/3 times, RA.2/4 times (3.14.5)

case N2..RepeatWhile:
{ let restart.code = here(D..C0D)
trans.C(pl^node)
trans.E(p2~node).dest.(first.reg)
trans.jump.if.true(first.reg, restart.code)

}; endcase
by Rl.l, R2.8, R2.9/twice, R2.ll, R3.2/3 times, R3.5, R5.2, R5.4, R6.1
R6.2, R6.3, RA.1/3 times, RA.2/3 times (3.14.6)

case N2..Assignment:
trans.E(p2~node).dest.(first.reg); trans.update(pl~node, first.reg)
endcase
by Rl.l, R1.2, R2.2, R2.9, R2.ll, R2.12, R3.2/twice, R3.3, R5.2, R5.4
R5.6, RA.1/3 times, RA.2 (3.14.7)

- 66 -

Snapshot 3.14 (continued)
let trans.E(node).dest.(reg) be switchon type'node Into

by Rl.l, R3.1, R5.1, RA.l (:
{ case T..True:

trans.load(D..T, TRUE).dest.(reg); endcase
by Rl.l, R2.2, R2.7, R2.14, R5.3, R5.7, RA.l, RA.2 C

case T..False:
trans.load(D..T, FALSE).dest.(reg); endcase

by Rl.l, R2.2, R2.7, R2.14, R5.3, R5.7, RA.l, RA.2 (3,

case N3..ConditionalExp:
t rans.E(p1"node).des t.(reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.E(p2~node).dest.(reg)
trans.jump.to(econd.code)
f ix.he re(fcond.code)
trans.E(p3~node).dest.(reg)
fix.here(econd.code)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/3 times, R3.3, R5.3/twice, R5.4, R6.2
RA.1/4 times, RA.2/5 times (3.

case T..Ident:
trans.load(D..Ide, node).dest.(reg); endcase

by Rl.l, R2.2, R2.7, R2.13, R2.14, R5.3, RA.l/twice, RA.2 (3.

case N2..AssignmentExp:
trans.E(p2~node).dest.(reg)
trans.load(domain.of(reg), reg).dest.(reg)
trans.update(pl~node, reg); endcase
by Rl.l, R1.2, R2.2, R2.9, R2.ll, R2.12, R2.15, R3.2/twice, R3.3,
R5.4, R5.6, R5.7, RA.1/3 times, RA.2 (3.

i. 14.8)

1.14.9)

14.10)

14.11)

14.12)

R5.3
14.13)

CHAPTER 4

Environment

In this chapter we study the impact on the transformation process that

results from incorporating an environment. We consider a flow diagram

language with environments based on Table 10.1 of [Sto77]. We also extend

that table with functions and procedures; both with one call-by-value

parameter.

-— Snapshot 4.1: Flow Diagrams with Environments. Original Specification

i:Ide* identifiers
c " om* commands
e.Exp. expressions
c Dummy | If e Then c Else c„ | c.;c0 | While e Do c, I

Let i=e In c. | Call e(e,) 1
e : := i | If e, Tlie '1

l Then e2 Else e3 | Let i=ei In e, | Fn i.e, | Fn i. Is c

Semantic Domains
T=[{ TRUE } + { FALSE }].
F=[E > W].
P=[E > C].

q: Q.
0=[T + Q].

s:S=0*.
c:C=[S > S].
e:E=[T + F + P + { ErrorE }].
W=[S > [Ex S]].
D=E.

p:U=[Ide » D].

Semantic Domains of 'Interest'
ENV=U.
REG=E.
STA=S.
QU0=Q.
TEM=[F + P].

Semantic Primitives
Cwrong:[Q > C].
Cwrong=
>q.Strict{>s.s%q}.

truth values
function values
procedures values
quotations
output values
machine states
state transformations
expression results
expression evaluations
denotations
environments

environments
registered values
states
quotations
templates

Ewrong:[Q > W].
Ewrong=

>q.Strict(>s.<ErrorE,s%q>).

/
- 68 -

Snapshot 4.1 (continued)
Semantic Equations
C:[Com > U > C]. (4.1.1)

C[Dummy]p=
Is. (4.1.2)

Ctc^jc]p=
Ctc^jp ô Ctc^lp. (4.1.3)

C[Let i=e In c,]p=
E[e]p * 5ke.ctc1](p[e/[i]]). (4.1.4)

C[If e Then c. Else c„]p=
E[e]p * >e.e?T>e|T>C[c,]p,C[c„]p,Cwrong "condition in <If> not <Boolean>"

1 2 (4.1.5)

C[While e Do c]p=
Fix
{>c.{E[e]p ^

>e.e?T>e|T>C[c.]p ô c,Is,
Cwrong "condition in <While> not <Boolean>"}}. (4.1.6)

C[Call e(e)]p=
E[e]p *_
>e.e?P»E[e.]p \e'.Strict{e|P}e',

Cwrong expression in <Call> not <Procedure>". (4.1.7)

E :[Exp » U > W]. (4.1.8)

E[i]p=
Strict(^s.<p[i] In E,s>). (4.1.9)

E[Let i=e. In e„]p=
E[e^]p >e.Efe2](p[e/[i]]). (4.1.10)

E[If e. Then e„ Else e„]p=
E[e jp *
>e.e?T»e|T»E[e0]p,E[e„]p,Ewrong "condition in <If> not <Boolean>"

2 3 (4.1.11)

E[Fn i.e,]?®
Strict(>s.<(>e.E[e^](p[e/[i]])) In E,s>). (4.1.12)

E[Fn i. Is c]p=
Strict(Xs.<{fce.C[c](p[e/[i]])} In E,s». (4.1.13)

E[e (e„)]p=
E[e, TP 0_
>e.e?F»E[e]p *_ \e'.Strict(e|F)e',

Ewrong expression in <Call> not <Function>". (4.1.14)

- 69 -

In the specification shown in Snapshot 4.1 the domain of expression results,

E-[T + F + P + { ErrorE }], consists of the union of the three basic domains

of truth values, functions, procedures, and the error element ErrorE

(denoted by ?£ in [Sto77]). This is why, unlike Table 10.1 of [Sto77], some

equations include a domain check of the form e?D. For a definition of '?'

see Appendix C. To check and run the code produced by the generated CGP, we

wish to include a pre-declared procedure named [Write], Once we start pre

declaring names, instead of including the constants [True] and [False] among

the syntactic category of expressions, as it is done in [Sto77], we can also

pre-declare them as identifiers. The difference with [Sto77] is that our

example language 'runs' in a pre-declared environment. This can be specified

with the aid of a new valuator P, giving the semantic value of a 'program':

___________ Snapshot 4.2: Pre—declarations. Original Specification
Extensions to Snapshot 4.1

Syntax: Predeclared Identifiers ~ " ---
True:Ide.
False:Ide.
Write: Ide.

Semantic Equations
P: [Com >■ C].

P[c] =
C[c](Tu[PWRITE/[Wri te]][TRUE/[True]][FALSE/[False]]).

PWRITE:P.
PWRITE=
>e.e?T>Strict{>s.s%(e|T)},Cwrong "expression in <Write> not <Boolean>".

The 'top' and 'bottom' element of all single letter domains are predefined

identifiers in WFF^. Their names are made out by appending to the letters

'T' and 'B' (respectively associated with 'top' and 'bottom'), the lower

case letter corresponding to the domain in question. In the equation for P

above, 'Tu' is the top of 'U'. In the equation for Ewrong in Snapshot 4.1 we

used the error element ErrorE. This shows the different possibilities

- 70 -

provided in WFF ; we could have used 'Te' instead, the top element of 'E'. s

We have defined the state as a list of output values. These are either

produced by PWRITE, which expects a boolean value as its parameter, or by

one of the type checking primitives Cwrong or Ewrong, which expect a

quotation. These three primitives append their parameter to the output

stream. The symbol used in the equations for PWRITE, Cwrong and Ewrong,

denotes the list concatenation operator. It is defined in Appendix C and it

has not been included among the WFFg operators because, in all our examples,

'%' is used only in equations for primitive functions, which do not

intervene in the process of transformation.

4.1 Syntactic Transformations

Recall that in the previous chapter we argued that a strict function on the

state corresponds to a hardware activity, hence we eliminated such a

function. Now we are presented with strict abstractions in the semantic

equations for both procedure and function call, respectively (4.1.7) and

(4.1.14). These strict abstractions ensure call by value, an interesting

case to which we devote a whole section. For the moment let us assume that

we always use call by value. This means that we temporarily define a rule to

eliminate the occurrence of Strict. We will see later in Chapter 6 (when

analysing the semantic specification of the Lambda Calculus with both call-

by-value and call-by-name) how we can 'discover' the particular form of a

call by looking at every possible strict or non-strict function. Hence for

the moment we define a simple temporary rule which directly eliminates the

function Strict:

when e:TEM Strict(e) => e [R3.6]

- 71 -

TEM is a 'Domain of Interest'. Its name derives from the implementation

concept of a 'template'; a data structure to implement procedures and

functions (see Chapter 7). TEM indicates, in a name independent way, which

domains are associated with procedures and functions. In what follows

whenever we refer to a template, we mean either a procedure or a function.

4.2 Destination Analysis

4.2.1 Template Declaration

The declaration of a template is specified by the abstractions in (4.1.12)

and (4.1.13). Assuming a block structured universe, each template will

demand isolation. This means that a new, fresh, data area to keep all values

must be defined for every abstraction definition. One of the areas, used to

keep temporary values, is the area of destinations. In Chapter 2 we

introduced first.reg as either a free constant or a free variable containing

a description of a place for run-time temporary values, first.reg then

indicates where this area starts. If it is a constant it indicates the first

fast register available to contain temporaries, otherwise it is a variable

and contains a description, probably as a level and offset, of the start of

the corresponding run-time activation record's workspace. Hence, if we wish

to isolate the use of destinations within each applied occurrence of a

template, then we must ensure that all code, generated within the templates

body, makes use of destinations within this new area. The problem is that if

the template is declared in a semantic function which produces a value in

REG, then R5.1 applies (and R5.2 does not, see section 3.4.1) and all

references are made to the parameter reg, which might not be first.reg.

Therefore, we must substitute first.reg for reg in the body of the template:

when e+i and e:TEM e => [first.reg/reg]e [R5.8]

- 72 -

A parameter will also be expected in a particular area, indicated by a free

constant or free variable named first.par:

when e:TEM and i:REG e => [first.par/ije^ In DOM(e) [R5.9]
where e = Xi.e^

Note that, like first.reg, the interpretation of first.par is open to

various implementation choices. It contains a description of a place for

parameters, if it is a free constant it indicates a fast register.

Alternatively if it is a free variable it indicates the start of the

corresponding activation record's parameter area. Also, note the change of

functionality of [first.par/ije^ we still need to remember, for later

analysis, the original domain.

The declaration of a template also requires a load operation which is

performed by the same primitive procedure trans.load:

when e:TEM e => trans.load(DOM(e), e) In REG [R5.10]

Again, it is up to this primitive to decide what code is in effect

necessary. In (4.3.12) and (4.3.13) it will be necessary to load a closure,

a label value which, after the Continuation Analysis, will replace the

expressions appearing as the second parameter of those two calls of

trans.load. For example, according to the machine interface that we have

implemented to test our generated CGP, trans.load(D, label).dest.(reg) with

an environment link technique [Bor79], will generate the following DEC-10

instructions:

interpreting reg as
a fast register (reg=AC)
HRR AC,label
HRL AC,BAS

an invocation record word (reg=//off)
HRR AC,label
HRRM AC,#off(BAS)
HRLM BAS,#off(BAS)

- 73 -

----Snapshot 4.3: Flow Diagrams with Environments. Destination Analysis_____
i j . A Fragment
let C(node, p) be switchon type~node into by Rl.l, R3.1 (4.3 1)
{ case [Call e ^)] :

E([e], p).dest.(first.reg)
first.reg?P>
E([e.], p).dest.(first.reg+1)
first.reg|P(first.reg+1).dest.(first.reg),
Cwrong("expression in <Call> not <Procedure>"); endcase
by Rl.l, R2.9/twice, R2.ll/twice, R3.2/4 times, R3.3/twice, R3.6, R5.2
R5.4/twice, R5.ll (4.3.7)

l©t E(node, p).dest.(reg) be switchon type~node into
, r„ . by Rl.l, R3.1, R5.1 (4.3.8){ case [Fn i.e.]:

trans.load(F, E([e], p([first.par/[i]])).dest.(first.reg)).dest.(reg)
In E; endcase

by Rl.l, R2.2, R2.7, R2.14, R3.2/twice, R5.3/twice, R5.8, R5.9, R5.10
(4.3.12)

case [Fn i. Is c]:
trans.load(P, C([c], p([first.par/[i]]))).dest.(reg) In E; endcase
by Rl.l, R2.2, R2.7, R2.14, R3.2/twice, R5.3, R5.8, R5.9, R5.10 (4.3.13)

case [e (e2)]:
E(teil» p).dest.(reg)
reg?F»E([e2], p).dest.(reg+1); reg|F(reg+1).dest.(first.reg),
Ewrong("expression in <Call> not <Function>").dest.(reg); endcase
by Rl.l, R2.9/twice, R2.ll/twice, R3.2/4 times, R3.3/twice, R3.6, R5.3
R5.4/twice, R5.ll (4.3.14)

4.2.2 Template Invocation

For a function call we must also ensure that the resultant value has an

appropriate destination.

when e:TEM e(P) => e(P).dest.(first.reg) [R5.ll]

Note that, by symmetry, we provide a destination both for procedures and

functions, even though for procedures it is not always necessary (it is

required for example in NEW of a CLASS in SIMULA67 [Sim68]).

Applying these and all other transformations to bring Snapshot 4.1 to the

level of the Destination Analysis results in Snapshot 4.3 where we show only

- 74 -

those parts which have been transformed by conversions defined in this

chapter.

4.3 Continuation Analysis

We still have not encountered continuations in our example language.

Nevertheless, in a similar fashion to the analysis of section 3.4.2, we have

to look at those parts where jumps, to and from different parts of the code,

need to be produced. The areas to analyse are the specifications of

abstraction and application. In these areas the code to be planted obviously

has to be related and linked.

4.3.1 Template Declaration

The code associated with the declaration of a template (4.3.12) and

(4.3.13), relates to the crucial code fragment, usually refered to as the

areas of entry to and exit from a procedure or function. The request for

such code can be expressed as:

when e^:TEM e(PQ> e »̂

{ let ntry.code = trans.entry(node)

=> | trans.exit(node)
e(PQ, ntry.code, P^)A

The parameter node to trans.entry and trans.exit is a reference to the

parse-tree node under scrutiny. It is supplied to help the machine

interface. For example, it might be used to trace procedure or function

entry and exit, with reference to the source statement; or to establish a

link between entry and exit for purely code generation purposes; or to set

the type of a parameter on entry.

- 75 -

In some cases, we might need to refer to the code planted on exit (for

example if the language includes a resultis), so we rewrite the rule above
as:

when e^TEM e(PQ, e^ p^ a =>

{ let ntry.code = forward(DOM(e))
let exit.code = forward(COD)
trans.entry(ntry.code, node)
el
trans.exit(exit.code, node)
e(P , ntry.code, P,)A

} U 1

But because code is planted in a sequential manner, it will be necessary, at

the moment of abstraction, to plant appropriate instructions to skip at

declaration time over the abstraction body. So we redefine this rule once
more:

{ let ntry.code = forward(DOM(e))
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.code, node)

-> I e1
trans.exit(exit.code, node)
fix.here(skip.code)

when e^TEM e(P0> e , P^A [R6.4]

}
e(PO’ ntry.code, P^)A

To avoid clashes of names, here and in all similar cases, declared

variables, like any xxxx.code above will, if required, have a digit appended

to its name. Also when the domain associated with one of these variables

(the parameter to forward) is not COD, then the postfix code of any

xxxx.code is replaced by domD, where D is the associated domain. This is

done only as an aid to the eye, the lexical structure of WFFt names convey

no semantic value.

In the example language of this section, there are no recursive templates.

- 76 -

However, in J. Stoy's final example language (Appendix D) there are both

recursive functions (D.1.34) and procedures (D.1.35). The characteristic of

such semantic specification is the presence of the minimal fix point finder

Fix in an expression of the form Fix(>i.e). The instance of i:COD resulted

(see R6.3 in section 3.4.2) in the association of the variable 'i' with the

first instruction of 'e'. Now we are presented with the case of i:TEM,

According to R6.4, the first instruction of a template is indicated by the

variable ntry.code, so we simply require:

when i:TEM Fix(>i.e) => [ntry.code/i]e [R6.5]

The effect is that while planting code for 'e', if there is a reference to

'i', there will be a reference to the entry code. This is precisely the

required effect for a recursive structure. Note that the variable ntry.code

is in effect inherited from the transformation of 'e', and follows the same

naming conventions mentioned above. The result of applying this rule can be

found in (D.2.34) and (D.2.35).

4.3.2 Template Invocation

At the moment of invocation of a template (4.3.7) and (4.3.14), everything

seems to be ready. The abstractions values are kept respectively in

first.reg and reg, the arguments in first.reg+1 and reg+1 and the

destination for the results is in both cases first.reg. There is only need

to plant code to call the procedure or function:

when e:TEM e(P)A => trans.call(e, P)A [R6.6]

The actual code planted for call, entry and exit, is not fixed. This depends

on the definition of trans.call, trans.entry and trans.exit. One can choose

any of the well known machine or language dependent techniques to achieve

the desired effect. In the machine interface used to try our generated CGP,

we use an environment link technique [Bor79], the DEC-10 code for entry,

exit and call is shown below:

garbage collected frames stack discipline

code for entry:
NTRY 0,#size
MOVEM LNK,0(T0P)
MOVEM BAS,1(TOP)
MOVEM ENV,2(TOP)
MOVE BAS,TOP

MOVEM LNK,0(T0P)
MOVEM BAS,1(TOP)
MOVE BAS,TOP
ADDI TOP,#size

code for exit:
MOVE LNK,BAS
MOVE BAS,1(LNK)
JRST 0,@0(LNK)

MOVE
MOVE
JRST

TOP,BAS
BAS,1(TOP)
0,@0(T0P)

code for call:
MOVE
HLRZ
JSP

AC,template
ENV,AC
LNK,0(AC)

The difference between the left hand side 'garbage collected frames' and the

right hand side 'stack discipline' is that in the former, space for

invocation frames is obtained through the pseudo-op NTRY, which returns in

TOP a pointer to a new frame //size words long (this area must be garbage

collected). In the latter, //size words are obtained from the stack, and are

released on exit. The example language of this chapter accepts functions and

procedures both as parameters and as function results, hence we must use the

former in this language.

4.3.3 Type Checking

The process of type checking can be regarded as a [TRE > TRE] transformation

which is applied prior to the process of code generation. Tne corresponding

parts of a semantic specification would be abstracted at the level of a

'static' semantics (in the sense of [ADA80]). This phase is of no interest

- 78 -

to us, our primary objective is the analysis of code generation. However,

type-checking can be regarded as a parallel phase to code generation, either

because there is run-time type checking or because the language under

scrutiny embeds in its 'dynamic' semantics (also in the sense of [ADA80])

some sort of 'domain-check', which might call for either a compile or run

time type check. In all previous examples, this matter has been avoided by

considering a very simple domain of expression results E=T. But in the

current example, the domain of expression results is

E=[T + F + P + { ErrorE }]. This is why, each equation requiring one

particular value in E, has to check, using the WFF operator '?', if the

given value is in the expected summand. From a code generation standpoint,

this domain check is associated with a type-checking process. To decide

whether this type-checking should be done at compile or at run-time, we

simple look for 'registered' values associated with the check. Assuming a

domain check is used only in the boolean part of a conditional, we define

firstly:

when i:REG i?d => trans.skip.if.in(i, d) [R6.7]

And secondly, we extend the when and where clauses of R6.2 as follows:
when (EOIsDes or EOIsIde or EOIsInt) and i:REG
where = EOIsIde > null,

Reverse and EOIsInt > trans.skip.if.not.in(P),

c = eBi sSkp > trans.jump.to(FalseCo), JumpRut(i, FalseCo)
EOIsInt = ep2.trans.skip.if .in(P)

The primitive procedure trans.skip.if.in will have to plant appropriate

instructions to 'run-time' type check the domain associated with a

destination. For example, using two words, one for a value and another for a

type; the generated CGP will generate in turn:

- 79 -

code for i?d -> cl, c2:

DMOVE AC2,i ; as a result of R6.7
SKIPE AC3,d
JRST 0,F ; R6.2
cl
JRST 0,E

F: c2
E:

The transformation rule above, is triggered by a condition on REG. This

suggests its counterpart, the compile-time type checking rule:

when not i:REG i?d => check.if.in(i, d)

~ -Ck,if,ln does not Plant any code, it compile-time checks the description

of a value (i) with respect to a type (d). This method works well provided

all expressions involving a compile time check are not in REG. To see why

this is not enough consider the example language of this chapter. This

language clearly requires run time type checking, because:

- There are no explicit types provided by the syntax
Expressions can result in booleans, functions or procedures.
These values can be passed as parameters or returned as the value of
functions.

- The double arm conditional expression does not guarantee 'balancing' in
the sense of ALGOL68 [Wij75].

But suppose that we impose certain syntactic restrictions, which guarantee

that run-time type checking is not necessary. Suppose we restrict the use of

the conditional and the kind of values passed to and from functions. These

restrictions, whatever their nature, do not necessarily require a different

semantic specification, but our transformational system will still generate

a CGP with run-time type checking. The problem is that the two rules above

are triggered by registered values in REG, which are independent of any

syntactic restriction. To overcome this problem, we introduce an

implementation issue at the level of a semantic specification. When we

require a compile-time type check we shall use the static domain check '??',

instead of the dynamic '?'. This is a similar operator which can be trapped

- 80 -

during the transformation process to impose our requirement. We rewrite the

rule above as:

e => check.if.in(i, d) [R6.8]
when (e =_ i?d and not i:REG) or e =_ i??d

This mechanism of type checking, both at compile and at run-time, requires

destinations to be carriers of type information. This is why, the primitive

trans.load takes a domain name as one of its parameters. It is up to the

definition of trans.load to either associate a type to its destination

descriptor, for compile time type checking, or to plant appropriate

instructions to load, at run time, a type to be associated with a fast

register or activation record location.

Cond and Scond: In some examples of [Sto77], the conditional is avoided by

explicit use of the function Cond. This is a generic function, and it is a

predefined WFFS identifier. Its counterpart Scond (Static Cond) indicates

compile-time type checking.

Cond : [[A x A] ^ B > A]
Cond<e1, e2>eQ = eQ?T » (e|T > e ^ e2), Wrong [D8]

Scond : [[A x A] > B > A]
Scond<e^, e2>eQ = eo??T * ê|T * el» e2^’ Wrong

These definitions lead naturally to the following Normalisation rules:

Cond<e1, e2>eQ => eQ-T ^ ê0*T ^ el* e2^’ Wrong [Rl*4]

Scond<e^, e2>eQ =='> e0?’T ^ ̂e0*T ^ el’ e2^,Wrong [R1*5]
So that R6.7 or R6.8 (the corresponding run-time or compile-time rules) can

be applied accordingly.

In Snapshot 4.4 we show the result of the Continuation Analysis. Again, to

- 81 -

----Snapshot Flow Diagrams with Environments. Continuation Analysis
let C(node, p) be switchon type'node Into
{ case [Call e(ep]: no change

E([e], p).dest.(first.reg)
{ let econd.code = forward(COD)
let fcond.code = forward(COD)
trans.skip.if,in(first.reg, P)
trans.jump.to(fcond.code)
ECl^]. p).dest.(first.reg+1)
trans.call(first.reg|P, first.reg+1).dest.(first.reg)
trans.jump.to(econd.code)
f ix.he re(fcond.code)
Cwrong("expression in <Call> not <Procedure>")
f ix.he re(econd•code)

} endcase by R6.2, R6.6, R6.7 (A.4.7)
let E(node, p).dest.(reg) be switchon type'node Into ™ v,{ case [Fn i.e^: yV no change

{ let ntry.domF = forward(F)
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.domF, node)
E([e^]» P([first.par/[i]])).dest.(first.reg)
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(F, ntry.domF).dest.(reg)

}; endcase ,
case [Fn i. is c]: by R6'4 <4-4-1 2)

{ let ntry.domP = forward(P)
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.domP, node)
C([c], p([first.par/[i]]))
trans.exit(exit.code, node)
f ix.here(skip.code)
trans.load(P, ntry.domP).dest.(reg)

}; endcase , ,
case [e (e)]: *,yR6-4 (4.4.13)
E([e.J, p).dest.(reg)
{ let econd.code = forward(COD)
let fcond.code = forward(COD)
trans.skip.if,in(reg, F)
trans.jump.to(fcond.code)
E([e2], p).dest.(reg+1)
trans.call(reg|F, reg+1).dest.(first.reg)
trans.jump.to(econd.code)
f ix.here(fcond.code)
Ewrong("expression in <Call> not <Function>").dest.(reg)
f ix.here(econd.code)

}; endcase by R6>2> R6.6> R6>7 (4.4.14j

- 82 -

avoid clustering, only those parts affected by the transformations of this

section are shown. Moreover, the conditional command and the while loop,

have been removed, because the effect of R6.7 is similar to the one shown in

(4.4.7) and (4.4.14).

4.4 Environment Analysis

We wish to maintain one single compile (or run) time symbol structure,

global for any procedure requiring access to it. This assumes a block

structured use of the environment. As with any data structure, we need to

insert, delete and find elements (descriptors). In the current example, the

environment is passed around and it gets updated in both types of

definitions by denotation (4.1.4) and (4.1.10). Both updates occur within

the context of recursive procedures. To maintain such a symbol structure -

global to a set of mutually recursive procedures - we have to Insert and

delete locally to every recursive activation. The CGP will have to remember

- within each recursive activation - which objects are declared, so that

before exiting that particular activation, the same objects can be

undeclared in turn. The transformations that follow will eliminate all

environments from parameter lists, and will 'sandwich' declarations with the

corresponding reset action.

{ let x = e2
declare(e1, x)

eQ(P0, i Q e ^ e ^) , PX)A

when i:ENV }

This has the desired effect, but we wish to be more general. In a different

language we might have more than one declaration, and the undeclaring

activity might be too expensive. We therefore, rewrite the rule above,

adding also a similar one for a let declaration:

{ let old.env=this.env
e

e0(p0» e» PP A [R7.1]
when e:ENV and e+i

when i:ENV => declareCDOMCe^, e ^ e2) [R7.2]

{ let i = e
C

{ let old.env = this.env
ewhen i:ENV => I C

I reset(old.env)
[R7.3]

The variable this.env is a reference to the current environment (a symbol

structure plus a stack, an A-List or whatever implementation choice has been

made). The assignment to old.env remembers, locally to each recursive

activation, the state of the current environment, declare updates it and

reset puts it back to the original state. The first parameter to declare,

like the one supplied to trans.load, is given for type checking purposes.

— clare mi8ht or might not produce code. In particular, if the declared

object is not known at compile time, (because, say, it is a destination in

REG, which will be associated with a particular value at run-time) then

dgclare wil1 have t0 associate a temporary location with the declared name.

In our machine interface, the following equivalence holds:

I I { LET I = new.loc()
declare(PQ, reg, P^) | => | trans.update(I, reg)

I I declare(P , I, p)
_ l I__} 0 1

We are not including this equivalence as rule of our transformational

system. It is a procedural action within the machine interface.

Transformations like this, could be added at every level, but such

transformations are in effect macro expansions and we do not pursue further

- 84 -

{c0i e; ci * or
e0 * e’ e2 or
e0 * e i* 6

in this direction.

R7.1, R7.2 and R7.3 fulfil two requirements, i.e: insertion and deletion. To

search for an element in the global symbol structure we need.

when i:ENV i(P)A => look.up(P)A [R7.4]

We are in effect presented here with a choice of 'styles of target CGP.

Suppose we extend R5.3 and R5.7, both defined in section 3.4.1, with a

further condition acting on the domain of interest ENV, as follows.

e(P) => e(P).dest.(reg) In COD
when e(P):REG and not (e^i and i:ENV)

=> I {CQ; C; Cj }
I or

=y I e„ ^ C,
I or

=> I en > e,> c
| wnere C = trans.load(DOM(e), e) In REG

when e:REG and not e:COD and (e=i or (e=i(P) and i:ENV))

Under the transformations dictated by the these two rules, the procedural

text corresponding to an identifier within an expression would be:

trans.load(domain.of(look.up([i]))» look.up([i])).dest.(reg)

This corresponds to a view which associates, to the process of looking up a

value, the activity which involves only a read of a symbol table

description. We have experimented with this version. It was attractive

because it structured the CGP, splitting a look-up from a load activity. In

more complex languages, however, like the one considered in Chapter 6, (the

Lambda Calculus with both call-by-value and call-by-name) the structure of

look.up requires the following process: looking up a symbol table; loading a

value; call of a 'thunk' to find the value associated with a 'name'

expression; and jump if necessary to the appropriate continuation. Also, we

wish to prepare the shape of our transformational system to handle not only

- 85 -

the static binding' mechanism that we practise in the present examples, but

also dynamic binding'. In this case, all primitive procedures which

maintain a symbol structure at 'compile-time', should instead plant

appropriate code to do the same, at 'run-time'. In this case we also require

look.up to be a separate process. We do not proceed with the proposed

extensions to R5.3 and R5.7. The corresponding procedural text under the

original definition of these two rules is: look.up([i]).dest.(reg) (4.5.9).

Now that the environment is global to all the CGP's procedures, we can

eliminate it from parameter lists:

when i:ENV let v(PQ, i, P ^ A => let v(PQ, P ^ A [R7.5]

when i:ENV e(P0> i, P ^ A => e(PQ, P ^ A [R7.6]

In Snapshot 4.5 we show the effect of these transformation rules. We display

only the cases corresponding to both let declarations and the identifier

among expressions. The other cases transformed by the Environment Analysis

are similar to those shown.

4.5 Optimising Transformations

4.5.1 Dumping

If we now consider the interpretation of first.reg as a fast register then

we cannot leave the occurrence of the expressions first.reg+1 and reg+1 of

Snapshot 4.4 as they stand: On the one hand it is not always true that every

intermediate result will occupy one register's word. On the other hand in a

recursive procedure (of the CGP), such an expression assumes the existence

of an infinite supply of fast registers. What we require is to check whether

or not the first.reg+1 or reg+1 is available. This can be done, if we assume

a weighted tree [Bor79]. In this case weight selects the number of registers

- 86 -

Snapshot 4.5: Flow Diagrams with Environments. Environment Analysis_____
A Fragment

let C(node) be switchon type^node into by R7.5 (4.5.1)
{ case [Let i=e In c.]:

E([e]).dest.(first.reg)
{ let old.env = this.env
declare(domain.of(first.reg), first.reg, [i])
C([c])
reset(old.env)

}; endcase by R7.1, R7.2, R7.6 (4.5.4)
}

let E(node) .dest.(reg) be switchon type''node into by R7.5 (4.5.8)
{ case [i];

look.up([i]).dest.(reg) In E; endcase by R7.4 (4.5.9)

case [Let i=e^ In e„]:
E([e,]).dest.(reg)
{ let old.env = this.env
declare(domain.of(reg), reg, [i])
E([e]).dest.(reg)
reset(old.env)

}; endcase by R7.1, R7.2, R7.6 (4.5.10)
}__

required by a particular node and max.reg indicates the last available

register. The CGP can then check if the request can be granted. If it can,

then a new destination is obtained through a call of the function next, so

that the appropriate offset can be evaluated. If it can not be granted, then

a dump operation takes place. We formalise this by:

test E=max.reg
then
{ let old.env = this.env
let D = trans.dump(R)
[R/R+l]{D/R}C [R9.1]
reset(old.env)

} or
{ let nxt = next(R)

[nxt/R+1]C
_} rename D=>dmp.loc
P)A.dest.(R+l)

s], P^)A.dest.(R+l) (P contains an [s])

Note that we are using the special substitution rule { / }, whose definition

=>

when

where

C = { Cx; C
R = reg or

} and
rst.regC 2 — 0

(

E = weight~[s] if C = e(po’
E = R otherwise

- 87 -

is similar to the normal substitution rule [/], except when entering an

auxiliary parameter list AUX, where it does not substitute .dest.(P). We

have to substitute only non-destination registers, because a destination is

an implicit declaration, introduced by rules like R5.4, among others. The

trimmed form (to show only the relevant detail) is:

{ let i=e(P); C } => { e(P).dest.(i) ; c }

Also this requires a definition of 'free', „hich 'feels' destinations as
declarations.

trans.dump gets a new temporary destination (a location) and plants

appropriate instructions to store the contents of R. The temporary

destination needs to remain 'in scope' only while code for [R/R+l]{D/R}C is

planted. This is why the dump activity is surrounded by the 'brackets':

let old.env = this.env ; C ; reset(old.env)

4.5.2 Multiple Declarations

More than one declaration, in the sa„e eqnation, resnlts in multiple

declarations which can easily be optimised as follows:

{ let old.env = this.env
C1
{ let old.env = this.env

}
reset(old.env)

}
reset(old.env)

=>

{ let old.env = this.env
CC1
2reset(old.env)

[R9.2J

4.5.3 Loading

It is possible for the generation process to request loads from a register

into itself. This can be easily trapped, but ve have to be cautious: A load

operation also assigns a type to a register for compile or run-time type

- 88 -

checking purposes. Hence, we can eliminate the load operation but not the

type definition, except when there is no type alteration.

trans.load(E, I).dest.(I) | => | make.type(I, E) [R9.3]
when E domain.of (I) __| |

trans.load(E, I).dest.(I) | => | {} [R9.4]
when E _= domain.of (I) __| |__

domain.of was defined in section 3.4.1, as part of the definition of DOM.

make.type is a primitive operation that associates a type to a destination.

We also take the oportunity to eliminate possible expensive duplicate sub

expressions produced by the introduction of domain.of. This will happen in

general in the parameter list of trans.load or declare.

Note that the where statement defining xx is BCPL syntax. Is is not included

as a WFFj. expression since it is trivially equivalent to a BCPL let.

When a conditional does not denote a run time activity and appears in a

block, we have to transform it into one of the different types of BCPL

conditional commands, depending on the form of each branch:

E„(domain.of(E), E, P)A | => | E„(domain.of(xx), xx)A
EfI | | where xx = E

[R9.5]

4.6 BCPL

[RA.3]

1 [RA.4]

- 89 -

— — — Snapshot 4.6: Compile-Time Type Checking, rcpt
case N3. .ConditionalCom: ------------------

trans.E(pi"node).dest.(first.reg)
test check.if.in(first.reg, D..T)
then { let econd.code = forward(D..COD)

let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2~node)
trans.jump.to(econd.code)
fix.here(fcond.code)
trans.C(p3"node)
fix.here(econd.code)

}
or Cwrong("condition in <If> not <Boolean>")- endcase
by Rl.l, R2.9, R2.ll, R3.2/4 times, R3.3, R5.2 rsT Rfi 7 r* «
R 6/3 times, RA.1/4 times, RA.2/6 times,’ S . l ’ ’ ^ (4.6.5)

{ C0 I 1 { c0eQ>{},e2 j => | unless eQ do e2 [RA.5]

> 1 _ l I > Cl

Among other applications, these rules are applied in a compile-time type

checking process. Suppose that the syntactic restrictions refered to in

section 4.3.3 apply to our current example language. The equation for a

conditional will be rewritten exactly as in (4.1.5) except for the static

check '??' instead of the dynamic The resultant procedural case (4.6.5)

shown in Snapshot 4.6 should be compared with the corresponding (4.7.5) in
Snapshot 4.7.

We have completed all conversions required for the transformation processes

of this chapter. In Snapshot 4.7, we display the final version in BCPL; this

time we include all syntactic categories. The example language, used at this

point, is now powerful enough to allow us to show the kind of code that we

are able to generate. The reader must be aware, that the topic of this

thesis, merges both the theoretical issues of a semantic universe, with

- 90 -

implementation issues of code generation techniques. It is therefore

imperative to show, at certain point, the sort of code that we can produce.

Consider the following input program:

Let f=Fn i.
Fn j.i

In Let g=f(True)
In Let x=g(False)

In Call Write(x)

This trivial program involves the high level concept of a function returning

a function and it serves to emphasise the mechanism and treatment of the

environment presented in this chapter. The above program, compiled with the

CGP shown in Snapshot 4.7 produced the following DEC-10 code:

; trans.jump(L5, TRUE)
; trans.entry(L6, Fn i. etc)

code for: Let f-Fn etc
code for: Fn i. etc

JRST 0,L5
L6: NTRY 0,0

MOVEM LNK.O(TOP)
MOV EM BAS,1(T0P)
MOVEM ENV,2(T0P)
MOVE BAS,TOP
DMOVEM AC4,3(BAS)

code for: Fn j. i
JRST 0,L7

L8: NTRY 0,0
MOVEM LNK,0(TOP)
MOVEM BAS,1(T0P)
MOVEM ENV,2(T0P)
MOVE BAS,TOP
DMOVEM AC4,3(BAS)

code for: i
HRR ENV,2(BAS)
DMOVE AC2,3(ENV)
MOVE LNK,BAS
MOVE BAS,l(LNK)
JRST 0,@0(LNK)

L7: HRRI AC2,L8
HRL AC2,BAS
MOV El AC3 ,F
MOVE LNK,BAS
MOVE BAS,l(LNK)
JRST 0,@0(LNK)

declare({}, AC4, i)

trans.jump(L7, TRUE)
trans.entry(L8, Fn j.i)

; declare({}, AC4, j)

trans.load({}, [LI,#0 0 3]).dest.(AC2)
trans.exit(forward, Fn j.i)

5 to entry

trans.load(F, L8).dest.(AC2)
make.type(AC2, F)
trans.exit(forward, Fn i. etc)

8 to entry

- 91 -

L5:

code
code
code

HRRI
HRL
MOVE I
DMOVEM

AC2,L6
AC2,BAS
AC3,F
AC2,10+Base

for: Let g=f(True) etc
for: f(True)
for: f

AC2,10+Base
AC3.F
0,L9

DMOVE
CAIE
JRST

code for: True
DMOVE
HLRZ
JSP
JRST
SETO
SETO
OUs
DMOVEM AC2,12+Base

for: Let x=g(False) etc
for: g(False)
for: g
DMOVE AC2,12+Base
CAIE AC3,F
JRST 0,L11

code for: False

L9:

L10:
code
code
code

AC4,4+Base
ENV.AC2
LNK,0(AC2)
0,L10
AC2.0
AC3.0

trans.load(F, L6).dest.(AC2)
make.type(AC2, F)
declare(F, AC2, f)

trans.load(F, [LO,#010]).dest.(AC2)
trans.skip.if.in(AC2, F)
trans.jump(L9, TRUE)

trans.load(T, [LO,#004]).dest.(AC4)

trans.call(AC2, AC4)
trans.jump(L10, TRUE)
ErrorE (null value)
ErrorE (null type)J ----— — — \ J. j j

0,[ASCIZ/*C*L?Ewrong expression in <Call> not <Function>/l
A P 9 1 O - L D ----- . J _ _ -I y „ J

LI 1:

L12:
code
code

code

L13:

AC4,6+Base
ENV.AC2
LNK,0(AC2)
0,L12
AC2,0
AC3.0

DMOVE
HLRZ
JSP
JRST
SETO
SETO
OUs
DMOVEM AC2,14+Base

for: Call Write(x)
for: Write
DMOVE AC2,0+Base
CAIE AC3.P
JRST 0.L13

for: x
DMOVE AC4,14+Base
HLRZ ENV,AC2

LNK,0(AC2)
0.L14

declare(F, AC2, g)

trans.load(F, [L0,#012]).dest.(AC2)
trans.skip.if.in(AC2, F)
trans.jump(Lll, TRUE)

trans.load(T, [L0,#006]).dest.(AC4)

; trans.call(AC2, AC4)
; trans.jump(L12, TRUE)
; ErrorE (null value)
; ErrorE (null type)

0,[ASCIZ/*C*L?Ewrong expression in <Call> not <Function>/]
apo i . declare(F, AC2, x)

trans.load(P, [L0,#000]).dest.(AC2)
trans.skip.if.in(AC2, P)
trans.jump(L13, TRUE)

JSP
JRST
OUs

trans.load(F, [L0,#014]).dest.(AC4)

trans.call(AC2, AC4)
trans.jump(LI4, TRUE)

0,[ASCIZ/*C*L?Cwrong expression in <Call> not <Procedure>/]

- 92 -

____________ Snapshot 4.7: Flow Diagrams with Environments. BCPL_____________
let trans.C(node) be switchon type^node Into

by Rl.l, R3.1, R7.5, RA.l (4.7.1)
{ case T..Dummy:

{}; endcase by Rl.l, R2.8, RA.l (4.7.2)

case N2..Sequence:
trans.C(pl~node); trans.C(p2"node); endcase
by Rl.l, R2.9, R3.2/twice, R7.6/twice, RA.1/3 times, RA.2/twice (4.7.3)

case N3..DefinitionByDenotationCom:
trans.E(p2~node).dest.(first.reg)
{ let old.env = this.env
declare(domain.of(first.reg), first.reg, pl'node)
t rans.C(pS^node)
reset(old.env)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/3 times, R3.3, R5.2, R5.4, R7.1, R7.2, R7.6
RA.1/4 times, RA.2/twice (4.7.4)

case N3..ConditionalCom:
trans.E(pl~node).dest.(first.reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.if.in(first.reg, D..T)
t rans.jump.to(f cond.code)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
t rans.C(p2~node)
trans.jump.to(econd.code)
fix.here(fcond.code)
trans. C(p3/'node)
fix.here(econd.code)

}
trans.jump.to(econd.code)
fix.here(fcond.code)
Cwrong("condition in <If> not <Boolean>")
f ix.he re(econd.code)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/4 times, R3.3, R5.2, R5.4, R6.2/twice, R6.7
R7.6/3 times, RA.1/4 times, RA.2/8 times (4.7.5)

- 93 -

}

---------------- ___ Snapshot 4.7 (continued^case N2..While: ---------- -------- -------------- ------- ----
{0 let restart.code = here(D..C0D)

trans.E(pI-node).dest.(first.reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.if,in(first.reg, D..T)
trans.jump.to(fcond.code)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2~node)
trans.jump.to(restart.code)
f ix.here(fcond.code)

}
trans.jump.to(econd.code)
fix.here(fcond.code)
Cwrong("condition in <While> not <Boolean>")
fix.here(econd.code)

}0; endcase
by Rl.l, R2.8, R2.9/twice, R2.ll, R3.2/4 times, R3.3, R5.2, R5.4, R6.1
R6.2/twice, R6.3, R6.7, R7.6/twice, RA.1/3 times, RA.2/7 times (4.7.6)

case N2..Call:
trans.E(pl^node).dest.(first.reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.if.in(first.reg, D..P)
trans.jump.to(fcond.code)
test weight''p2/'node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(first.reg)
trans.E(p2~node).dest.(first.reg)
trans.call(dmp.loc, first.reg).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(first.reg)

trans.E(p2~node).dest.(nxt)
trans.call(first.reg, nxt).dest.(first.reg)

trans.jump.to(econd.code)
fix.here(fcond.code)
Cwrong("expression in <Call> not <Procedure>")
fix.here(econd.code)

}; endcase
by Rl.l, R2.9/twice, R2.ll/twice, R3.2/4 times, R3.3/twice, R3.6 R5.2
R5.4/twice, R5.ll, R6.2, R6.6, R6.7, R7.6/twice, R9.1, RA.1/5 times
RA.2/6 times ^ -j ^

let trans.E(node) .dest. (reg) be switchon type''node into
by Rl.l, R3.1, R5.1, R7.5, RA.1 (4.7.8)

{ case T..Ident:
look.up(node).dest.(reg); endcase

by Rl.l, R2.2, R2.7, R2.14, R3.2, R5.3, R7.4, RA.1/twice (4.7.9)

________________________ Snapshot 4.7 (continued)_________________
case N3..DefinitionByDenotationExp:

trans.E(p2~node).dest.(reg)
{ let old.env = this.env
declare(domain.of(reg), reg, pl~node)
trans.E(p3~node).dest.(reg)
reset(old.env)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/3 times, R3.3, R3.3, R5.4, R7.1, R7.
RA.1/4 times, RA.2/twice

case N3..ConditionalExp:
trans.E(pl~node).dest.(reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.if.in(reg, D..T)
trans.jump.to(fcond.code)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.E(p2~node).dest.(reg)
trans.jump.to(econd.code)
fix.here(fcond.code)
trans.E(p3~node).dest.(reg)
fix.here(econd.code)

}
trans.jump.to(econd.code)
f ix.here(fcond.code)
Ewrong("condition in <If> not <Boolean>").dest.(reg)
fix.here(econd.code)

}; endcase
by Rl.l, R2.9, R2.ll, R3.2/4 times, R3.3, R5.3/3 times, R5.4
R6.2/twice, R6.7, R7.6/3 times, RA.1/4 times, RA.2/8 times

case N2..Abstraction:
{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, pl'node)
trans.E(p2~node).dest.(first.reg)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

}; endcase
by Rl.l, R2.2, R2.7, R2.14, R3.2/twice, R5.3/twice, R5.8, R5.9,
R6.4, R7.1, R7.2, RA.1/3 times, RA.2/5 times

, R7.6
(4.7.10)

(4.7.11)

R5.10
(4.7.12)

Snapshot 4.7 (continued)case N2..Routine:
{ let ntry.domP = forward(D..P)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code)
trans.entry(ntry.domP, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, pl'node) trans.C(p2~node)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..P, ntry.domP).dest.(reg)

}; endcase
R7 92'r! w ;7,.R2*14’ R3*2/twice, R5.3, R5.8, R5.9, R5.10, R6R7.1, R7.2, RA.1/3 times, RA.2/5 times

case N2..Application:
trans.E(pl^node).dest.(reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.if.in(reg, D..F)
trans.jump.to(fcond.code)
test weightAp2''node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2~node).dest.(reg)
trans.call(dmp.loc, reg).dest.(firs t.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2~node).dest.(nxt)
trans.call(reg, nxt).dest.(first.reg)

trans.jump.to(econd.code)
f ix.he re(fcond.code)
Ewrong("expression in <Call> not <Function>").dest.(reg)
fix.here(econd.code)

}; endcase
by Rl.l, R2.9/twice, R2.11/twice, R3.2/4 times, R3.3/twice R3 6 RS

R5,11’ R6‘2, R6*6, R6*7’ R7-6/twice, R9.1, RA.1/5 times RA.2/6 times ., „(4.7

.4
7.13)

.3

•14)

CHAPTER 5

Continuations

In this chapter we analyse the correspondence between continuations and code

pointers. As an example, we use the Flow Diagrams Language with Jumps based

on Table 11.1 of [Sto77]. We will also define all transformation rules

required for the final example of [Sto77] and for GEDANKEN [Rey70]. In the

following sections any reference to these languages is made with respect to

the Original Specification and final CGP in BCPL as shown respectively in

Snapshot 5.1 below shows the semantic specification used as an example in

this chapter. The semantic equation for blocks is, however, missing. This

equation requires special treatment and will be analysed separately later in

this chapter. We also remove from Table 11.1 of [Sto77] the two syntactic

constructs [True] and [False], assuming a similar strategy to that one of

We therefore bring the transformation process up to the level of the

Syntactic Transformations, as shown in Snapshot 5.2

Snapshot 5.1; Flow Diagrams with Jumps. Original Speciflcation_------

Appendices D and E.

the previous chapter.

The required analysis starts at the level of the Semantic Transformations.

identifiers
commands
expressions

i:Ide.
c:Com.
e:Exp.

c ::= Dummy I If e Then c1 Else c2 I c1;c2 | While e Do c(|
Let i=e In c. | Goto e

- 97 -

Semantic Domains
T=[{ TRUE } + { FALSE }].

s: S.
A.

c:C=[S > A].
e:E=[T + C].
d:D=E.
k:K=[E » C].
w:W=[K > C].

G=[C > C].
p:U=[Ide » D].

Semantic Primitive
Wrong:C.

Semantic Domains of 'Interest'
ENV=U. '
REG=E.
STA=S.
ANS=A.

Semantic Equations
C : [Com » U > G].

C[Dummy]pc=

C[If e Then c Else cjpc=
E[e]p{>e.Cond<C[c1]pc,C[c2]pc>e}.

C[c1;c„]pc=
C[c1Jp{C[c2]pc}.

C[While e Do c.]pc=
Fix{>c'.E[e]p{>e.Cond<C[c1]pc',c>e}},

C[Let i=e In c.]pc=
Ele]p{^e.C[c^](p[e In D/[i]])c}.

C[Goto e]pc=
E[e]p{>e.e?C>e|C,Wrong}.

E:[Exp » U > W].

E[i]pk=
k{p[l]}.

E[If e Then e2 Else e3]pk=
Ete1Jp{>e.Cond<E[e2]pk,E[e3]pk>e}.

E[Let i=e. In e„]pk=
E[e1]p{^e.E[e2](p[e In D/[i]])k}.

Snapshot 5.1 (continued)

truth values
machine states
answers
command cont.
expression values
denotations
expression cont.
expression closures
command closures
environments

undefined

environments
registered values
states
answers

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.9)

(5.1.10)

(5.1.11)

- 98 -

5.1 Semantic Transformations
5.1.1 Splitting Continuations
Expression Continuations: An expression continuation abstracts the meaning

of the rest of the program which is expecting a particular value. As we have

seen, values are kept in destinations, either registers or positions in an

activation record. From a code generation point of view an expression

continuation involves two activities, one to load a value into a

destination, the other to continue with the appropriate continuation. It

seems natural then, to split every occurrence of such an expression into its

two components: a destination and a command continuation. This splitting

activity will apply also to environment continuations (without a load), like

the one required for GEDANKEN.

Definition: An 'internal' domain of interest KON is required and defined as

follows:

for 1=1...n
let A^ = any domain
let D. = any domain
let KT = [A > COD]
let B, « [K, » COD]

B* = [[D x K] » COD]
» • •

Bn [[D̂ x D^ x ... Dn_^x KnJ ^ COD]

KON = |_|K± [DIO]

| | indicates domain union. Every summand of KON is a function [A^ > COD]

which produces code and appears as the last parameter of a function B^ that

also produces code. To be general, we should not restrict this definition to

'the last parameter', but all our examples are written in such a way that an

expression continuation is the last function in the sequence of curried

applications. So we simplify the definition of rules by imposing a 'style'

- 99 -

Tr r r r n T h0n~ 5‘ I 'l FlQW, D1fgramS Wl r-h JumPS- Syntactic Transformf i ™ «
1 c i i ? ^ i = ' ° ° t y p e ' n° de l n t ° M - l (3 - 2 . 1)

c; endcase by Rl.l (5.2.2)
case [If e Then c Else c]:
E([e], p, > e . e ? W c ([Cl], p, c),C([c2], p, c) .Wrong); endcase

by Rl.l, R1.4, R3.2/3 times (5.2.3)
case [c,;c2J:

Cdcj}, p, C([c2], P, C)); endcase by Rl.l, R3.2/twice (5.2.4)
case [While e Do cj:
Fix(>c'.E([e], p, >e.e?T»e>C([Cl], p, c'),c,Wrong)); endcase

by Rl.l, R1.4, R3.2/3 times (5.2.5)
case [Let i=e In c]:
E([e], p, Xe.C([cx], p([e In D/[i]]), c)); endcase

by Rl.l, R3.2/3 times (5.2.6)
case [Goto e]:
B([e], p, >e.e?C0D>e|COD,Wrong); endcase by Rl.l, R3.2 (5.2.7)

f c a s e ^] ; P> ^ bG SWitCh°n tyPe^ode into by Rl.l, R3.1 (5.2.8)
k(p(Cii)); endcase by R1>1> (5>2#9)

case [If ex Then e Else e]:
E([e1], p’ >e-e?T>e>E([e2], p, k),E([e], p, k),Wrong); endcase

by Rl.l, R1.4, R3.2/3 times (5.2.10)
case [Let i=e In e^:

Edej], p, Je.E([e2], p([e In D/[i]]), k)); endcase
j by Rl.l, R3.2/3 times (5.2.11)

of utilising expression continuations. For example, in Snapshot 5.1 we can

see that K. domains are: K=[E>C], W=[K>C] and G=[C>C] because C=C0D after

the state analysis. Of these only K appears in any B. domain, i.e: the

domain [ExpM»W] = [Exp>U>KK] which, after the Syntactic Transformations, is

(the data type): [[Exp x U x K]>C0D]. So, in this example, K0N=K, the domain

of expression continuations. In GEDANKEN, K0N=[K + X], because in that

language there are both expression and environment continuations.

- 100 -

An alternative way of defining KON, instead of internally defining it, is to

allow the user to supply the required information. KON would then be defined

as a 'domain of interest' in the semantic specification.

To analyse expression continuations in KON we need to consider:

applications, abstractions as parameters and variables as parameters:

Applications: We must explicitly divide an applied occurrence of an

expression continuation. On the one hand to prepare a value for the

destination or environment analysis, and on the other, to prepare a

reference for the continuation analysis:

when eQ:KON e0(el) => 61 ’ 60 In C0D [R4*!]
This way of splitting continuations requires an extension to R5.7 which was

defined in section 3.4.1. Now, there are many more cases that require a load

operation; here is the final version of that rule:

[R5.7]

C • IvIjU CtllU. 11 U L C • v W LJ CL LIU

((e^i and not i:ENV) or e=EQ!E1 or e=#eQ or e=n or e=q)

{CQ; e; Cx } 1
or |

=> 1 {C0; C;
1 or C1 >

eq ^ e j 1
or |

=> 1 eQ >C,
| or e2

e0 > el* e 1 NeedsLoad __1
=> 1 e„ > e.

| where C
, c
= trans.load(DOM(e), e)

Abstractions as parameters: This is the case of a definition of an

expression continuation. We associate the bound variable with the

destination and the body with a command continuation in the following way:

e (P, >i.e) | => | eQ(P).cont.(e).dest.(i) [R4.2]
when (Jti.ê) :K0N __ I |_____ i is bound in ê^

- 101 -

Tj--- Snapshot 5.3: Flow Diagrams with Jumps. Splitting Continuations
let C(node, p).cont.(c) be switchon type^node into by R4.5 (5.3.1)
{ case [Dummy]: *no change
case [If e Then c Else c]:
E([e], p).cont.te?T>e>Ct[c], p).cont.(c),C([c], p).cont.(c),Wrong
).dest.(e); endcase by R4.2, R4.6/twice (5.3.3)

case [c ;c2]:
Cdcjj, p).cont.(C([c2], p).cont.(c)); endcase by R4.6/twice (5.3.4)

case [While e Do c.]:
Fix(>c .E([e], p).cont.(e?T»e»C([c], p).cont.(c'),c,Wrong).dest.(e))
etldcase by R4.2, R4.6 (5.3.5)

case [Let i=e In c.]:
E([e], p).cont.(C([c1], p([e In D/[i]])).cont.(c)).dest.(e); endcase

by R4.2, R4.6 (5.3.6)
case [Goto e]:
E([e], p).cont.(e?C0D>e|COD,Wrong).dest.(e); endcase by R4.2 (5 .3 .7)

E(node, p) .cont.(k) .dest. (?) be switchon type^node into

{ case [ij: by R 4 -3 (5'3-«
k; endcase byR4.1 (5.3.9)

case [If e Then e Else e_]:
E([e], £ 2 3
).cont.(e?T>

e»E([e2], p).cont.(k).dest.(?),E([e], p).cont.(k).dest.(?),
Wrong).dest.(e); endcase by R4.2, R4.4/twice (5.3.10)

case [Let 1=6^ In e]:
P) .cont. (E([e2], p([e In D/ [i]])) .cont. (k) .dest.(?)) .dest. (e)

endcase by R4>2, R4.4 (5.3.11)

Variables as parameters: When a variable which is an expression continuation

is passed as a parameter, we do not have an indication of the destination,

so we leave it undefined:

I I let v(D).cont.(i In COD)
let v(D, i) be C | => | .dest.(? In d) [R4.31

when i:K0N=[d>C0D] _| |__be C

when i:K0N=[d»C0D] e(P, i)— | => |~e(P) .cont. (i In COD) [R4.4]
 I I__ .dest.(? In d)

- 102 -

These two rules must be regarded as temporary transformations. Their

immediate resolution is the analysis of destinations, continuations and

environments.

Command Continuations: For command continuations, and by symmetry with

expression continuations, we define:

when i:COD let v(D, i) be C => let v(D).cont.(i) be C [R4.5]

when e^COD eQ(P, e ^ => eQ(P) .cont. (e^ [M.6]

Snapshot 5.3 shows the result of splitting expression continuations in this

way.

5.1.2 Destination Analysis

The analysis above requires a new set of rules which should be compared with

R5.1, R5.3, R5.4 and R5.ll defined in the Destination Analysis of Chapters 3

and 4. These new transformation rules convert .cont.() and .dest.()

constructions. The result of their application is shown in Snapshot 5.4.

let v(D).cont.(P).dest.(?:d)
be C

_ l
1 =>

| let v(D).cont.(P).dest.(reg)
| be C [R5.12]

when dCREG 1__

e.cont.(P).dest.(?:d) => e.cont.(P).dest.(reg) [R5.13]
when dCREG

e.cont.(P).dest.(i)
when i:REG

~l =>
_l

| e.cont.(P).dest.(i)
|__rename i=>(i=ak)»reg+k, reg

[R5.14]

e.cont.(P).dest.(?:d) => e.cont.(P).dest.(first.reg) [R5.15]
when e:TEM and dCREG

- 103 -

— --Snapshot 5.4; Flow Diagrams with Jumps. Destination Analysis
t c a s e i l L £ u ° nt'{C> e"1“ h0” H i - change

no change
case [If e Then c, Else c j :
E([e], p 1 2

)'COnt‘(Wrong’re8?T>flrSt're8>C([Cl]’ p)*cont*(c)»C(Ic2J» p).cont.(c),
).dest.(first.reg); endcase by R5.2, R5 . 1 4 (5 .4 .3)

case [c ;c]:
l 1 no change

case [While e Do c]:
Fix(>c'.E([e], p1

).cont.(first.reg?T>first.reg>C([c 1 p).Cont.(c'),c,Wrong
).dest.(first.reg)); endcase by R5.2, R5.14 (5.4.5)

case [Let i=e In c]:
E(je], p).cont.(i([Cl], p([first.reg In D/[i]])).cont.(c)

).dest.(first.reg); endcase by R5.2> (5#4.6)

case [Goto e]:
E([e], p).cont.(first.reg?C0D>first.reg|COD,Wrong).dest.(first.reg)

} endcase by R5.2, R5.14 (5.4.7)

let E(node, p).cont.(k).dest.(reg) be switchon type‘'node into
{ case [i]: byR5.12 (5.4.8)

P([i]) • dest. (reg); k; endcase by ^ 3 (5.4#9)

case [If e Then e„ Else e J :
KCIej], p 2 3
).cont.(reg?T>

reg>E([e2J, p).cont.(k).dest.(reg),
E([s~], p)«cont•(k).dest.(reg),Wrong

).dest.(reg); endcase by R5.13/twice, R5.14 (5.4.10)
case [Let i=ex In e]:

E([e], p).cont.(£([e], p([reg In D/[i]])).cont.(k).dest.(reg)
 ̂). est.(reg); endcase by R5.13> R5 . 14 (5 .4 .n)

- 104 -

5.1.3 Continuation Analysis

Command Continuations: We need to interface the relative position of code

fragments to the linear sequence of code instructions. We wish to to do this

in such a way that the code generated for one particular construction

depends on the immediate context of its appearance. The structure of

continuations provides precisely this interface, since a continuation is the

meaning of the rest of the program. In terms of code generation, a

continuation is a reference to the starting position of the code generated

for the rest of the program. That is, it must be a forward reference. Even

after splitting, expression continuations preserve this property through the

Destination Analysis. For example (5.1.4) specifies that the semantic value

of a sequence of commands is a function that depends on the first command,

the environment and a continuation value. This continuation is, in turn, a

function of the second command, the environment and the continuation of the

sequence. The corresponding procedural text, before the

Continuation Analysis is:

case [c.;c2]:
C([CjJ, p).cont.(C([c2], p).cont.(c)); endcase

We can see that in order to plant code for a sequence of commands we have to

plant code for the first command, in the presence of the given environment

and with a reference to the code planted for the second command (the

•cont.(e) construction). This can be expressed as:

case [c.;c„]:
C([c^J, p).cont.(... code yet to be planted ...); endcase

We wish to plant code sequentially, so the reference to the starting

position, in the linear sequence of code instructions, of the code

associated with the second command is not knowimntil code has been generated

for the first one. The reference to the code generated for the second

- 105 -

command is then a forward reference. We generalise this idea by stating that

every .cont.(e) construction is a forward reference, with associated
creation and fixing activity:

when e^fi e(P).cont.(e^)A =>

{ let continue = forward(COD)
e(P).cont.(continue)A
fix.here(continue) [R6.9]

In (5.5.4) we show the result of this rule when applied to the sequence of

commands shown above. Note that it is up to each command to decide whether

the forward reference is used. For example in (5.5.7), the

corresponding procedure to generate code for a goto will disregard this

forward reference; exactly whet one would expect, since the original

specification (5.1.7) also disregarded the continuation. By contrast in

(5.5.5), the corresponding procedure to generate code for a while-loop makes

an explicit reference to the forward reference, when breaking out of the

loop in: trans.jump.if.false(first.reg, continue).

This mechanism requires a forward rpfpron^o twara reference for every sequence of two
commands. However, it is not the case , i t ,that a label or chain should be

created for every command. It is up to the particular interpretation of

~ rWard t0 efficiently implement forward references. In particular they

should not be created until some construction really requests it. Also, the

optimising transformations will use the fact that code is generated in

sequence, to avoid each command planting a jump instruction to the next.

We also rename continuations appearing as formal parameters so that all

continuations, now references to the code, are homogeneously named:

- 106 -

let v(D).cont.(i)A be C | => | let v(D).cont.(i)A be C
| | rename i=>continue

[R6.10]

Call: The conversion for abstraction with continuations involves a lambda

abstraction for the return continuation:

e(P , >i.e , P1)A
when i:C0D and ^i.e^:TEM

=>

{ let ntry.code = f orward(D0M(ep)
let exit.code = forward(COD)

}

let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.entry(ntry.code, node)
[exit.code/i]e.
trans.exit(exit.code, node)
fix.here(skip.code)
e(PQ, ntry.code, P^)A

[R6.ll]

So that, if the return continuation is taken, a jump will be planted to

exit.cont (the code generated by trans.exit).

If an abstraction is used inside an environment definition (or any other

[/] construction) then we define:

5.2 Optimising Continuations

5.2.1 Flow Analysis

The way that we are handling forward references might result in a jump

instruction being planted, whose effect will be to jump to the next

instruction in sequence (a jump to program counter plus one). This situation

can easily be trapped if we add a flag, to every forward reference passed as

a parameter, which indicates whether or not its associated code will be

planted immediately after. We have to delay this analysis until after the

- 107 -

Environment Analysis, when the structure of forward references remains

constant. As usual, we formalise this observation with conversion rules.

First, a transformation for a I:C0D (a chain or label) passed as a parameter
at the top level declaration:

let v(D).cont.(I)A be
switchon E into
{ case [sJ: { CQ; c ; C }

endcase
=>

}
when

where

let v(D).cont.(I, jump)A be
switchon E into
{ case [sJ: { C0; C3; C2 }

endcase'
[R8.1]

}
C1 = e(P).cont.(I)A or C =e(P, I)A
e is not one of: fix.here, trans.load,

trans.entry trans.thunk.entry, trans.exit, trans.thunk.exit,
trans.jump.if.true or trans.jump.if.false.

C3 = e(P).cont.(I, boo)A or (depending on C.) C„=e(P, I, boo)A
boo= true.jump if C„:C0D 1 3 —
boo= jump otherwise

Next, a transformation for those I:C0D which are either free in the

procedure .here this transformation is applied or looally declared (through
a let but not as a formal parameter).

when

or
when

where

{ e
let IQ = E
Cq » C.; C
w

} '1

=>

{ e

}

let IQ = E
C0 ’ C3 * C2
i ° a 03 2
ei

[R8.2]

C1 Z. e(P)*cont.(I)A or C = e(P, I)A
and (fixed or fixing or global)
and 1̂ is one of: fix.here, trans.exit or trans.thunk exit

fixed = “ <dePend1"8 “ Cl> ^ »~)A
fixing- I=I0 and E=^forward(P)
globaL I free in the procedure where this transformation is applied,
boo - true.jump if (fixing and C :C0D) or fixed or global
boo = false.jump otherwise

is in the context of:
for I2=e„ to e» do { fix.here(1^); C • c • r \

I0 = e!I and I = e?(T +1) ^ ’ 0’ Cl» C2 >
C3 as before
boo = true.jump if (-COD, boo = false.jump otherwise

- 108 -

5.2.2 False Jumps
Now that a flag indicates if a jump is truly required, we can eliminate

those jumps where the flag is the constant FALSE. Obviously we can not

eliminate those where the flag is a variable:

{ C ; C2; C3 } => {Cl5 C3 } [R8.3]
when CyjL trans. jump.to(i, false, jump)

This resembles the 'constant-folding' mechanism of traditional optimising

compilers, applied to the flow of control instead of the analysis of

expressions.

5.2.3 Conditional Jumps
The simplest form of a conditional, selecting two continuations according to

the value contained in a register: reg > c, c', is transformed by R6.2 to:

trans.jump.if.false(reg, c'); trans.jump.to(c, E), where E is either jump,

not jump or true.jump as a result of R8.1 or R8.2. These two statements will

generate a conditional jump, and if E evaluates to true, it will be followed

by an unconditional one. For example, the generated DEC-10 code might be:

JUMPE reg,LI
JRST L2

LI: ...(code for c)...
L2: ...(code for c')...

Which can be improved to:

JUMPNE reg,L2
...(code for c)•.•

L2: ...(code for c')...

This case does not happen very often in our examples, but when it does,

results in a multiplication of the code generated in crucial code areas like

the test of an iteration. It seems necessary then to improve this area. The

- 109 -

following transformation optimises the form of the CGP to avoid this case:

J1^I0’ I1̂ 1 1 test Eo
J0(I2» V 1 => 1 then < Jn<I1 »Ei > [R8.4J

__I I__or I, 7when J^= trans. jump.to 1 u 1
^2— *-rans• jumP• if.false or J = trans.jump.if true
E2— or e2Z. not J^P or E = true, jump

where Ĵ =_ reverse of J
El“ the result of R8.1 or R8.2

Note that if E2= true.jump, then the test statement above is equivalent to

an if statement (conditional compilation in BCPL). Examples of the

application of this rule can be found in (7.4.2) and (D.2.15).

In Snapshot 5.5 we display the last version of the transformation process

for the current example of this chapter.

-— :— :-----— ___ Snapshot 5.5: Flow Diagrams with Jumps. BCPL
let trans.C(node).cont.(continue, jump) be switchon type~node into

by R6.10, R7.5, R8.1, RA.l (5.5.1)i case T..Dummy:
trans.jump.to(continue, jump); endcase

by R6.1, R6.10, R8.1, RA.l (5.5.2)
case N3..ConditionalCom:

{0 let continuel = forward(D..COD)
trans.E(prnode).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
trans.skip.if.in(first.reg, D..T)
trans.jump.to(Wrong, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2''node).cont.(continue, true.jump)
fix.here(fcond.code)
trans.C(p3~node).cont.(continue, jump)

}0; endcase
by R6.1 R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice
R8.2/twice, RA.1/4 times, RA.2/6 times (5 5 ^

- 110 -

Snapshot 5.5 (continued)
case N2..Sequence:

{ let continuel = forward(D..COD)
t rans. C(pi "'node) .cont. (continue 1, false, jump)
fix.here(continuel)
trans.C(p2~node).cont.(continue, jump)

}; endcase
by R6.9, R6.10, R7.6/twice, R8.1, R8.2, RA.1/3 times, RA.2/3 times

(5.5.4)

case N2..While:
{ let restart.code = here(D..C0D)
let continuel = forward(D..COD)
trans.E(pI-node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
trans.skip.if.in(first.reg, D..T)
trans.jump.to(Wrong, true.jump)
trans.jump.if.false(first.reg, continue)
trans.C(p2~node).cont.(restart.code, true.jump)

}; endcase
by R6.1/twice, R6.2/twice, R6.3, R6.7, R6.9, R6.10, R7.6/twice
R8.2/3 times, RA.1/3 times, RA.2/5 times (5.5.5)

case N3..DefinitionByDenotationCom:
{0 let continuel = forward(D..COD)

trans.E(p2~node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
{ let old.env = this.env
declare(domain.of(first.reg), first.reg, pKnode)
trans.C(p3~node).cont.(continue, jump)
reset(old.env)

}0; endcase
by R6.9, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2, RA.1/4 times
RA.2/3 times (5.5.6)

case Nl..Goto:
{ let continuel = forward(D..COD)
trans.E(pI-node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
trans.skip.if.in(first.reg, D..COD)
trans.jump.to(Wrong, true.jump)
trans.jump.to(first.reg, true.jump)

}; endcase
by R6.1/twice, R6.2, R6.7, R6.9, R7.6, R8.2/3 times, RA.1/twice
RA.2/3 times (5.5.7)

}
. Vlet trans.E(node).cont.(continue, jump).dest.(reg) be

switchon type~node into by R6.10, R7.5, R8.1, RA.1 (5.5.8)
{ case T..Ident:

look.up(node).dest.(reg); trans.jump.to(continue, jump); endcase
by R6.1, R6.10, R7.4, R8.1, RA.1/twice (5.5.9)

- Ill -

-------— __ -______________Snapshot 5.5 (continued)
case N3. •ConditionalExp; ” ---------- ---------

{0 let continuel = forward(D..COD)
trans.E(pl“node).cont.(continuel, false.jump).dest.(reg)
fix.here(continuel) 8
trans.skip.if.in(reg, D..T)
trans.jump.to(Wrong, true.jump)
{ let fcond.code = forward(D..COD)

trans.jump.if.false(reg, fcond.code)
t rans.E(p2~node).cont.(continue, true.jump).dest.(reg)
flx.here(fcond.code)
trans.E(p3,'node).cont.(continue, jump) .dest.(res)}0; endcase 6

R8 R6-9,- *7-6/3 times, M . 1/twiceRe.2/twice, RA.1/4 times, RA.2/6 times (5>5 1Qj

case N3.«DefinitionByDenotationExp:
{0 let continuel = forward(D..COD)

trans.E(p2“node).cont.(continuel, false.jump).dest.(ree)
fix.here(continuel) 6
{ let old.env = this.env
declare(domain.of(reg), reg, pl~node)
trans.E(p3"node).cont.(continue, jump).dest.(ree)
reset(old.env)

}0; endcase
RA S ; 9: “ *10- R7,1* R7*2’ R7‘6, R8,1> R8,2» KA-1/4 times RA.2/3 times} (5.5.11)

5.3 Ellipsis

When adding the missing equation for blocks, we are presented with a choice

of semantic 'styles' to define the value associated with each label within

the block. We could express the equation with functions that collect label

names and their associated continuation values in lists which are used to

update the environment. This is done in [Mos74] and [MaS76]. Alternatively,

we can use an ellipsis (...) which makes names and values 'visible' without

the need of any extra collection, as in [Sto77]. Both methods define the

same semantic value, Each one, however, corresponds to a different code

generation strategy. Consider the two different styles of Snapshot 5.6. The

first equation (5.6.1), in which label values are defined with Fix,

corresponds to a one pass CGP. While the second (5.6.2), in which label

- 112 -

Snapshot 5.6: Blocks; two different 'styles'. Original Specification
Semantic Equation for Blocks (Using Ellipsis)

C[Begin ...i :c End]pc=
Fix(><c\.t.,c">7

{<C[c.]p'c",... ,C[c„]p'c>
Where p'-pfc'/[ijJ]...[c' /[i2]]})il. (5.6.1)

Semantic Equation for Blocks (Using Lists)

C[Begin c, End]pc=
C[c]p'*c
Where p"=Fix(>p'.p[L[c1]p'c/I[c1]]) . (5.6.2)

C[c,;c2]pc=
C[c1Jp{C[c2]pc}. (5.6.3)

C[i:c]pc=
C[c^]pc. (5.6.4)

I:[Com > Ide*]. (5.6.5)

X[c jc]=
l(c1f%I[c2]. (5.6.6)

I[i:c]=
<[iI> * (5.6.7)

L:[Com > U > C > C*]. (5.6.8)

L[c ;cjpc=
L[c1Tp{C[c2]pc}%L[c2]pc. (5.6.9)

L[i:c.]pc=
<C[c1]pc>. (5.6.10)

values are collected in lists, corresponds to a two pass CGP, since the

associated code generation procedures will pass the text twice for each

command, one by C[c^]p''c, the other indirectly through L[c^]p'c. This

happens according to our particular interpretation of Fix and our general

treatment of continuations.

This is a clear example of the way, that one can direct the structure of the

CGP by expressing the concrete semantics in different ways. We have chosen

- 113 -

.Snapshot 5.7: Flow Diagrams with Ellipsis. Original Specification
Syntax
c ::= Begin 1^ ...l End

Default:c | Endcase
1 ::= i :c
e : := n I ...

Switchon e Into c^;
Extensions to Snapshot 5.1

...C2 I Case n:cj |

Syntactic Domains
1 :Lco.
n :Nml.

Semantics
e:E=[T + C + N].
N.
M=[INT + { DefM }] .

p:U=[[Ide > D] x C].
pNDC==pt2.
N : [Nml > N].
I: [Nml » INT].
Switch:[N » C* > M* > C » C].
Switch=
Lam n<c^,... ,c, ><m.,... ,m, >c.
for i=l to k if m.:INT and n=anu n-m^ | INT then c^
for i=l to k if m.=DefM then cT
otherwise c. 1 1

Semantic Domain of 'Interest7 Isomorphic vrlfh n
INT. ---- ------- -----------

E[n]pk=
k(N[n]).

E[n]pk=
k(N[n]).

M: [Com > M].

M[Case n:c1]=
I[n]. 1

M[Default:c^]=
DefM.

C[Case n:c.]pc=
Ctc^pc.

C[Default:c1]pc=
C[Cj]pc.

C[Endcase]pc=
pNDC.

labeled com.
numerals

expression values
integers
case constants
environments
endcase selector

compile—time integers

(5.7.1)

(5.7.2)

(5.7.3)

(5.7.4)

(5.7.5)

(5.7.6)

(5.7.7)

(5.7.8)

- 114 -

Snapshot 5.7 (continued)
C[Switchon e Into c.; ...c„]pc=
E[e]p{)(e.e?N>Switch(e|N)<C[c^]p'c,...,C[c2]p'c><M[c^]....M[c2] W r o n g }
Where p'=p[c/NDC]. (5.7.9)

C[Begin 1.; ...12 End]pc=
Fix()Kc ,...,c '>.

«C(2i[l1])p'c",...,C(2+[l])p'c>
Where p'=p[c/ In D/l'ill^]]. • • [c* In D/1^[(5.7.10)

the ellipsis method for no special reason and not because a two pass CGP is

uninteresting. Further research could easily incorporate the second method.

We will also extend the language used in [Sto77] by adding a Switchon

statement. This feature also is conveniently defined using an ellipsis

making a nice companion to the block. Snapshot 5.7 shows the required

modifications and extensions to the original specification of Snapshot 5.1.

In this specification, we are using the operator t and a short hand for

expressions inside ellipsis which have different interpretations depending

on context:

Semantic Context
,t.:[[[D1 x ... x Dn] x N] >
d=
k'Sn ciiiu x N— n— ii mi 1 1

dtk and also k+d = d^ I.D11J

.t.:[[[D x ... x D] x N] > Dfc]
d=<D d, ,..., dn>:[D1 x ... x x ... x D J
k:N and 1 <= k <= n

Syntactic Context
.♦.:[S x N] > S]
[s] = [s. ..• s]: S
k:N and 1 <= k <= n .

[s]ik and also kt[s] = [s]̂ LU1 J

So that is used to extract individual components of tuples or node

offspring.

- 115 -

In a syntactic context: [s ... s] is short for: [s. ... s. ... s 1.1 z 1 k n
And in a semantic context:

<f(i' ’ 1/,}.... 8(1,')> is short for: <f(i1, i2),...,f(ik, i ^) ,... ,gUn)>
where 1 <= k < n.

So (5.7.10) in effects stands for:

C[Begin i. :c.; ...i, :c, ; ...i :c End]pc=
Fix(><c ,•..,ck ,...,cn>.
tIL {<r([?1])P'C2*•*“ »C([Ck]>P'Ck*l’•••*C([cn])P'C>Where p =p[c In D/[i]]...fc. Ink# [i]]... [8 in D/[i

})tl. 1 k k n n]]

The reason for this is that under certain constraints imposed by this

treatment, the use of ellipsis in our transformations is much more

simplified. An example of the kind of restriction imposed is reflected in

the semantic specification of the switchon statement (5.7.9). It is not the

same as the corresponding statement in BCPL. We have to avoid control

dropping into the next case statement, because this requires an explicit

Ck+1* So our examPle is rather like a PASCAL case than a BCPL switchon

statement. In short, in WFF^, sub-indices cannot be expressions, and we are

left only with decorations (quotes or digits) which we have to assume refer

to the next item in the ellipsis.

5.3.1 Syntactic Transformations

Having presented this restricted use of ellipsis, we move now to consider

the required transformations. An ellipsis in a syntactic element denotes a

n-ary node of the parse tree. The first requirement is to open this node, to

be able to see every sub-component:

- 116 -

case
[s 1 <

e Sn]: =>

case [s. ... s]:1 n{ let n = open.node(node)
e
close.node(n)

} rename [s^]=>select(n, inx)
[s]=>select(n, length(n))
n=5node.vec

This rule produces the desired effect, we can see every element of a node by

means of the select primitive. However, BCPL provides a quick way of

accessing elements of a vector with the '!' operator (defined in Appendix

C). Also, later rules require a general mechanism to release other sort of

data structures, hence instead of close.node we shall use a primitive named

freevec (which happens to be a suitable BCPL library routine). Accordingly,

we rewrite this rule as:

case [ŝ ... sn]:
{ let n = open.node(node)
e [R3.7]
freevec(n)

} rename [s]=>n!inx, [sn]=>n!!n,
n=>node.vec

case
[s^ ... sn]: | =>
e

open.node is a primitive procedure which depends on the structure of the n-

ary node. It stores each individual offspring in a different cell of a

vector, returning a pointer to that vector (with the size stored in its zero

word). Each sub-component can then be accessed via node.veclinx, and the

size with Inode.vec (equivalent to node.vecIO). freevec releases the space

occupied by the vector, inx is used in relation to the transformations

below. A pre-condition imposed by this transformation is ,that every

ellipsis, used inside the expression 'e' above, has to have the same length

as the ellipsis of its parent node. In Snapshot 5.8 we show the result of

this transformation, together with those corresponding to the Normalisation

and Syntactic Transformations.

- 117 -

E t g ? ! ; S°!w?raSramS Wlth Elllpsls’ Syntactic Transformations
{ caseT c l L ^ c U ^ ^ ^ ^ Rl-1, M.l (5.8717

C([cx], p, c}; endcase by Rla> M>2 (5>g>2)

case [Default:c^]:
CdCjJ, p, c); endcase by R1-1> ^ (5 8 3)

case [Endcase]:
p(NDC); endcase tby Rl.l, R3.2 (5.8.4)

case [Switchon e Into Cj; ...c]:
{ let node.vec2 = open.node(p2,'node)
{ let p' = p([c/NDC])
E(te], p, >e.e?N>

Switch(e|N, <C(node.vec2!inx, p', c),...,
C(node.vec2!Inode.vec2 , p', c)

>, <M(node.vec2!inx),...,
M(node.vec2!Inode.vec2)

j >, c),Wrong)
f reevec(node.ve c 2)

}; endcase by Rl.l, Rl.3, R3.2/7 times, R3.3, R3.7 (5.8.5)
case [Begin 1^ ...12 End]:

{ let node.vec = open.node(node)
Fix(><c',...,c">.

{ let p = p([c' In D/ltnode.vec!inx],...,
[c" In D/ltnode.vecI!node.vec])

<C(2inode.vec!inx, p', c "),...,
C(2i,node.vec I I node.vec, p', c)

})tl
f reeve c(node.ve c)

,); endcase by Rl.l, Rl.3 , R3.2/4 times, R3.3, R3.7 (5.8.6)

fcaee”!!?’ 8"ltchon into by M>1> (5.8.7)

case [n]:
k(N([n])); endcase hv pi 1 dq •} *>y Rl*l, R3.2/twice (5.8.8)

let M(node) be switchon type^node Into by R1 1 m i
{ case [Case n:c]: y ’ 83,1 (5.8.9)

I([n]); endcase

case [Default:c^]
DefM; endcase

by Rl.l, R3.2 (5.8.10)

by Rl.l (5.8.11)

Note that in WFFm has lower precedence than

- 118 -

It might be argued that this method it too biased to the systems programming

language BCPL, which we are using as target. Or that we are imposing, in

this correspondence, one particular strategy of our own, which might not be

general enough. What we are in effect showing is a mechanism, one way to

achieve the analysis necessary to transform semantic equations into a

particular form suitable for an algorithmic interpretation.

5.3.2 Continuation Analysis

We start by looking at those tuples containing ellipsis. Since in our

examples, this kind of tuple is used only to define either procedures or

functions (in TEM), code structures (in COD) or constants,. We will assume

that they are not used for anything else.

<eL.... en> -> { Cjj C2; C3; C4 } [K6.131
where C. = let c - E

C* = for inx=l to s-1 do Cf
C~ = unless s=0 do Cu
C, = freevec(c)
e^rD for i=l to n

| { e.; fix.with(c!inx,r) } if D£TEM
C =| { fix.here(c!inx); e. } if D£COD

I c!inx := e^ otherwise

| { e ; fix.with(c!s,r) } if DCTEM
C =| { fix.here(cls); e } if DCCOD
u I c!s := e otherwise

rename s=>!node.vec
c=>DC[COD+TEM]>code.vec, cons.vec
E=>D(J[COD+TEM]>forward.vec(s, D), newvec(s)
r=de¥tination of ê^

forward.vec gets as many forward references as indicated by its first

parameter, storing them in a vector and returning a pointer to it. newvec

gets a vector without initialising it. fix.with has to plant code to move

the closure value kept in the destination indicated by its second parameter

to the object described in its first parameter.

- 119 -

Next, two transformations for lists (indicated with a '*') appearing as

parameters of a procedure call. The first one for lists which do not produce

code. The second one, for those that do, requires a skip over the code that

will be generated. In both cases we transform, as above, moving C4 after the

call, and replacing the parameter by the reference to the vector:

 ̂ 2̂* [R6.14Jwhen eo^po* el’e^ :D* and not DCCOD
where C][, C2, C and C, are inherited from the transformation of e as a

result of R6.13 1
C5 ~ e0^p0* cons*vec, P1)A

e0(p0> ei» Pi)A

1-

when

let s = forward(COD)
trans.jump.to(s)
C2’ C3 flx.here(s)
e0(p0 > code.vec, ppA
C4

[R6.15]

where C^, C , C„ and C, same as R6.14
rename s=>skip.code

For the minimal fix point finder of a code list we require:

? f °l! C»; C2; °3: °5; C4 1 1K6-161
where C,. = e(PQ> code.vec, P ^ X

C,, C2, C^ and C^ same as R6.14
rename I^code.vecJinx, in=>code.vec!Inode.vec

And finally, selecting a particular element of a list can in certain cases

be ignored:

when e:COD* nfe or ein => C : e rD<; 1-71
where C = null if n=l LR6.17J

C = trans.jump.to(code.vecln) otherwise

- 120 -

5.3.3 Environment Analysis

Multiple declarations using the ellipsis are iteratively treated as follows:

when i:ENV i(P) => { C^; C2 } [R7.7]
where P [ej/e [e3/e,]

C^= for inx=l to s-1 do declare(e2, e^)
C^= unless s=0 do declare(e^, e^)

rename s=>!node.vec

5.3.4 Optimising Continuations

We also optimise for-unless constructions. When the last expression in the

ellipsis is appropriately related to those in the iteration:

for I=eQ to e^-1
do Ĉ
unless e.=0
do C„

when Cj_= [I/e^C,,

=> for I=£q to e^ do Ĉ [R8.5]

5.3.5 BCPL

Firstly t, which as explained above is used to extract individual components

of tuples or node-offspring: In BCPL this is done via 'selectors', the

following transformation makes up a selector name by juxtaposition of the

character 'p' and the integer 'n':

nie or efn => pn~e where pn is a 'selector' [RA.6]

And secondly, instead of BCPL procedures which generate code, when a

semantic valuator is associated with a constant value (like in M), we make

functions with the BCPL valof and resultis constructions:

let v(P) be C => let v(P)=valof C [RA.7]
when not v(P):C0D

and for every case inside C above:

case I: E; endcase => case I: resultis E [RA.8]

These rules describe basically what we require, in effect there are other

\

- 121 -

cases to consider, llke when E in RA.8 is in fact a block, we leave this

unspecified since it is not required for our example.

~ t fnnr 5 ' 9 i F1°W DiaSrams with Ellipsis. BOPT.trans.C(uoae;.cont.(continue, jump) be switchon type^node into'‘ ' ---- '-J
{ case N2. .Case: by R4*5, R6‘10’ R7*5’ * (5.9.1)

trans.C(p2'snode).cont.(continue, jump); endcase
by R4.6, R6.10, R7.6, R8.1, RA.1/twice, RA.2 (5.9.2)

case Nl..Default:
trans.C(pl-node).cont.(continue, jump); endcase

by R4.6, R6.10, R7.6, R8.1, RA.1/twice, RA.2 (5.9.3)
case T..Endcase:

trans.jump.to(look.up(NDC), true.jump); endcase
by R6.1, R7.4, R8.2, RA.l (5.9.4)

case N2..Switchon:
{ let node.vec2 = open.node(p2~node)
{ let old.env = this.env
declare(D..COD, continue, NDC)
{0 let continuel = forward(D..COD)

firx ? h ; r e (c ™ u ™ ; ; r ' <COntl”UeI’
trans.skip.if,in(first.reg, D..N)
trans.jump.to(Wrong, true.jump)
{ let cons.vec2 = newvec(Inode.vec2)
let code.vec2 = forward.vec(Inode.vec2, D..C0D)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
for inx-1 to Inode.vec2
do { fix.here(code.vec2!inx)

} trans*c(node.vec2Iinx).cont.(continue, true.jump)
fix.here(skip.code)
for inx=l to Inode.vec2
do cons.vec2Iinx := trans.M(node.vec2Iinx)
f r ^ hc(LrLt: ^) COde-VeC2- — -2)-co«.<co„ti„„e, j„»p>
freevec(cons.vec2)

}0
reset(old.env)

}
freevec(node.vec2)

}; endcase
by R4.2, R4.6/3 times, R5.2, R5.14, R6.1 R6 2 Rf 7 pa q
R6.10/4 times, R6.13/twice, R6.14, R6.15* R7.2* R7*3* R7*6/3 ti

“ -W3 ti«s, R8.5/twice, RA, 1/twice, ^^2/8 time”68
(5.9.5)

- 122 -

Snapshot 5.9 (continued)
case NX..Block:

{ let node.vec = open.node(node)
{ let old.env = this.env
let code.vec = forward.vec(!node.vec, D..COD)
for inx=l to Inode.vec
do declare(D..COD, code.veclinx, pl'node.veclinx)
for inx=l to Inode.vec-1
do { fix.here(code.veclinx)

trans. C(p2,'node .vec I inx) .cont. (code .vec I (inx+1) , false • jump)

unless Inode.vec=0
do { fix.here(code.vec!Inode.vec)

trans.C(p2~node.vec!Inode.vec).cont.(continue, jump)

let trans.E(node).cont.(continue, jump).dest.(reg) be
switchon type''node into by R4.3, R5.12, R6.10, R7.5, R8.1, RA.l (5.9.7)
{ case ...

case T..Numeral:
trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase

by R4.1, R5.3, R6.1, R6.10, R8.1, RA.l/twice, RA.2 (5.9.8)

}

}; endcase
by R4.6/twice, R6.10, R6.13, R6.16, R6.17, R7.2, R7.3, R7.6/twice, R7.7
R8.1, R8.2, R8.5, RA.l, RA.2/4 times, RA.6/3 timestimes (5.9.6)

}

}
let trans.M(node) = valof switchon type'node into by RA.l, RA.7 (5.9.9)
{ case N2..Case:

resultis trans.I(pl'node) by RA.l/twice, RA.2, RA.8 (5.9.10)

case Nl..Default:
resultis DefM by RA.l, RA.8 (5.9.11)

- 123 -

5.4 Further Developments: GEDANKEN

rules described in this section are only required for GEDANKEN. All

references below to (E.l.x) and (E.2.y) refer respectively to the

Original Specification and final CGP in BCPL as shown in Appendix E.

One of our WFFg forms of ellipsis allows the definition of 'iterative'
lambda expressions of the form:

• • • • e

In GEDANKEN, this fora of ellipsis Is used In the sequence constructions of

expressions (E.1.10) and parameters (E.1.20), as reproduced In
Snapshot 5.10:

^ ------Snapshot 5.10: GEDANKEN: Sequences. Original Specificationaie , ... ,e2Jpk= ---------- --- -----
Ete^p^e. ...E[e2]p{>e'.k{Seq<e,...,e'>}}}. (5 .1 0.1)

PtPj. ••• ,p2]pex=
Ccoerce e
{>e.e!FMJ[Pl]p(e|F}l{V. .. .U[p2 Jp' (e | F}(» [pj.......p2 J)x} .Cerror)

(5.10.2)

Such expressions would appear at the level of the Syntactic Transformations
as a parameter of a call of the form:

e()(P» . e)
This expression in effect is short for:

eQ(P, >ir e0(P, >i2. ... eQ(P, >ifc. ... eQ(P, H n.e) ...))

where l<=k<=n

n is the size of the node where the ellipsis occurred. So Snapshot 5.11 in

effect stands for Snapshot 5.12.

- 124 -

_____ Snapshot 5.11: GEDANKEN: Sequences. Syntactic Transformations________
case [e^,e^]:

{ let node.vec = open.node(node)
E(node.vec!inx, p,

^e. .. .E(node.vec! Inode.vec, p,)*e' .k(Seq(<e,... ,e'>))))
f reeve c(node.vec)

}; endcase hy Rl.l, R3.2/4 times, R3.7 (5.11.1)

case [p1...... p2]:
{ let node.vec = open.node(node)
Ccoerce(e,

>e.e?F»
U(node.vec!inx, p, e|F, 1,

>p'. ...U(node.vec!Inode.vec, p', e|F,
#[px...... P2]» x)),Cerror)

freevec(node.vec)
}j endcase hy Rl.l, R3.2/3 times, R3.7 (5.11.2)

Snapshot 5.12: GEDANKEN: Sequences (in effect). Syntactic Transformations
case [e,, e2.... e^,...,en]:

{ let node.vec = open.node(node)
E(node.vec!1, p, ^e^.
E(node.vec!2, p, Xe2»
• • •
E(node.vec!k, p,

• • •

E(node.vec!n, p, ^en *
k(Seq(<e^ ,e2,...,e^.... en ^ ̂ * ••)•••))

freevec(node.vec)
}; endcase

case [p., p2,..•,pk ,•••,Pnl:
{ let node.vec = open.node(node)
Ccoerce(e, >e.e?F> U(node.vec!1, p, e|F, 1, >p'.

U(node.vec!2, p, e|F, 2, ^p'«
• • •

U(node.vec!k, p, e|F, k, >p'.
• • •

U(node.vec!n, p', e|F, n, x)...)...)),
Cerror)

freevec(node.vec)
}; endcase

- 125 -

------ JjnaPsh°t 5.13: GEDANKEN: Sequences. Splitting Continuations
case le^, ... je^J: — --------

{ let node.vec = open.node(node)
for inx=l to Inode.vec—1
do E(node.vec!inx, p).cont.(...).dest.(e)
unless Inode.vec=0
do E(node.vec!Inode.vec, p) .cont.(Seq(<e,... ,e'»; k).dest.(e')
freevec(node.vec)

}; endcase by R4>1> R4>2> R4>6> R4_? (5>13>1)

case [Pl, ... ,p2];
{ let node.vec = open.node(node)
Ccoerce(e

).cont.(e?F>
for inx=l to Inode.vec—1
do U(node.vec!inx, p, e|F, inx).cont.(...).dest.(p')
unless Inode.vec=0
do U(node.vec!Inode.vec, p', e|F, #[p , . . . ,p]

).cont.(x).dest.(?),Cerror).dest.(e) 2
freevec(node.vec)

}; endcase by R4#2> R4.4> R4.6> R4<7 (5.13.2)

5.4.1 Splitting Continuations

Such syntactically sugared' form of ellipsis involves in these two cases,

an iterative definition of an expression continuation (5.11.1) and of an

environment continuation (5.11.2) which are transformed as follows:

I I for inx=l to Inode.vec-1
when eQ:KON eQ(P, >i. ...e) | => | do eQ(P).cont.(...).dest.(i) [R4.7]

 I I__unless Inode.vec=0 do e

The .cont.(...) construction, is a temporary expression which indicates a

reference to the position, in the linear sequence of code instructions, of

the code generated by the next iteration. This is a forward reference which

is analysed below in the Continuation Analysis. The result of this and all

other Splitting Continuations rules, when applied to Snapshot 5.11 results

in Snapshot 5.13.

- 126 -

5.4.2 Destination Analysis

Iterative Creation: In (5.13.1), the iteration is producing values which

need to be preserved until the next statement outside the iteration is

reached. This requires a dump operation, expressed as:

for 1=1 to Eq do Ĉ
unless E^ do C^

=>

{ let old.env = this.env
let old.off = this.off
for 1=1 to Eq do C^
unless Ê do C,.
reset(ola.env)

}
when C = e .(P.).cont.(...).dest.(I.)

C2- * C7; e2(P2),cont*((V ,dest*(I2); C8 * C0= e„(<I.,...,!„>)~3_ ^2 1 2 'where C,= e1(P1).cont.Ctrans.dump(I); ...).dest.(Ij)
C = { C?; e (P).cont.(C).dest.(I); C }
C^= e (old.off}.dest.(I J
any C^, C

[R5.16]

this.off is a global primitive variable containing a description of the

current workspace area. It is used to remember the beginning of the

'dumping' area in old.off. In such a way that e^, instead of expecting a

tuple as a parameter, expects old.off which, together with the now different

description associated with this.off, define the boundaries of the area

where the tuple values have being dumped.

Iterative Conservation: The rule above, applies when registered values are

defined in each iteration. Those that need to be preserved during the whole

iteration require a dump operation before the iteration starts, and a load

at each step.

I | { let dmp.loc = trans.dump(I.)
for 1=1 to E do C. I => I for 1=1 to E do C~ [R5.17]
C2 I I C

_ J ! _ }
when C = e (P , I , P„)A

I :REG and any C
where C^= { C^; trans.Ioad(DOM(Ij), dmp.loc).dest.(1^) }

- 127 -

Parameters: When a value In REG Is passed as a parameter at a top level

procedure declaration, by symmetry, we rename It throughout the hody of the
procedure:

when i:REG ̂ ^ be C I > ! let V D̂0» i» Di) be c [R5.18] I I rename i=>reg

so that now all REG values are homogeneously named.

Dyadic Operations: In (E.1.9), the semantic equation for a case statement,

the relational operator '=' is Used to test for a particular run-time

registered value. Associated with R6.2 we define a transformation rule for
all relational dyadic operators:

»he„ e , « and e ^ R E o C l o is^one ^ I q ^ e ^ ̂ IR5'‘91
Where xk is respecilvely one of: EQ, EQ, NE, LT, LE,^T, GE ’

irans.skip.if generates a skip instruction whose nature is indicated by the

primitive constant value i.skipXX. An example of a transformation by 85.19
can be found in (E.2.9).

In Snapshot 5.14, we show the current statp nf hr>Hn ostate of both sequencing constructs.

5.4.3 Continuation Analysis

Conditional Skip, *5.19 requires a further extension to *6.2 similar to that

one of section 4.3.2 to deal with run-time type checking. There, the code

associated with the boolean part of a conditional was a test and skip

instruction. Now R5.19 introduces precisely the same sequence.

- 128 -

________ Snapshot 5.14: GEDANKEN: Sequences. Destination Analysis__________
case [e^, ... ,6 2]:

{ let node.vec = open.node(node)
{ let old.env = this.env
let old.off = this.off
for inx=l to Inode.vec-1
do { E(node.vecIinx, p).cont.(...).dest.(reg); trans.dump(reg) J
unless Inode.vec=0
do E(node.vec!Inode.vec, p

).cont.(trans.dump(reg); Seq(old.off).dest.(reg); k
).dest.(reg)

reset(old.env)
}
freevec(node.vec)

}; endcase by R5-14» *16 (5-14.1)

case [p,...... P2 1 :
{ let node.vec = open.node(node)
Ccoerce(reg

).cont.(first.reg?F>
{ let dmp.loc = trans.dump(first.reg)
for inx=l to Inode.vec- 1
do (U(node.vec!inx, p, first.reg|F, inx).cont.(...)

trans.load(F, dmp.loc).dest.(first.reg)
) .dest.(p')

unless !node.vec=0
do U(node.vec!Inode.vec, p', first.reg|F,

// [p x, ... ,P2J). cont. (x). dest. (?)
},Cerror

).dest.(first.reg)
freevec(node.vec)

}; endcase by R5.14, R5.15, R5.17, R5.18 (5.14.2)

So once more, we extend the when and where constructions of R6.2 as follows:

when (EOIsDes or EOIsIde or EOIsSkp) and i:REG
where C~ = EOIsIde > null,

Reverse and EOIsInt ^ trans•skip•if»not»in(P),
Reverse and EOIsDya ^ trans*skip*if (ReveDya(I) , P) y

C = E8lsSkp > trans.jump.to(FalseCo), JumpRut(i, FalseCo)
E&IsDya = e =trans.skip.if(I, P)
EOIsSkp = EOIsInt or EOIsDya

- 129 -

_ |papsh°t 5.15:^GEDANKEN: Sequence of Parameters. Continuation Analysis

{ let node.vec = open.node(node)
{0 let continue2 = forward(COD)

Ccoerce(reg).cont.(continue2).dest.(first.res)
fix.here(continue2)
trans.skip.if,in(first.reg, F)
trans.jump.to(Cerror)
{ let dmp.loc = trans.dump(first.reg)
for inx=l to Inode•vec—1
do ({ let continuel = forward(COD)

U(node.vec!inx, p, first.reg|F, inx).cont.(continuel)
fix.here(continuel)

trans.load(F, dmp.loc).dest.(first.reg)).dest.(p')
unless Inode.vec=0
do U(node.vec!Inode.vec, p', first.reg|F, #[p ... p i

).cont.(continue 1 2J
).dest.(?)

}0
freevec(node.vec)

}; endcase by R6.1, R6.2, R6.7, R6.9, R6.10, R6.18 (5.15.1)

Iteration: Recall that in R4.7 above

.cont.(...) when analysing expressions

the form: Xp« ... e. The «cont.(.

in the next iteration of the for

reference, for which we already

appropriately:

I I
e(P).cont.(...)A | => |

I
__I

The way that this rule affect

sequence of expressions is so

parameters is affected that we

shown in Snapshot 5.15.

we introduced an expression of the form

continuations in KON with ellipsis of

construction denotes the code planted

loop produced by R4.7, this is a forward

have enough machinery to transform

{ let continue = forward(COD)
e(P).cont.(continue)A [R6.18 J
f ix.here(cont inue)

the procedural text associated with the

similar to the way that the sequence of

proceed by displaying the latter only, as

••)

- 130 -

5.4.4 Environment Analysis

The process of Splitting Continuations, as described in section 5.1.1, is

applied not only to expression continuations in [REG^COD], but also to

environment continuations in [ENV^COD]. This particular analysis affects a

few cases in the analysis of GEDANKEN. There are two moments to consider:

declaration and elimination.

Declaration: In section 4.4, we defined R7•1 and R7.3 to transform the

definition of a new environment with a declare-undeclare pair. Now we need a

similar rule to transform the equivalent case of a declaration continuation.

This rule is used in GEDANKEN in the equations for a non-recursive

declaration (E.2.15) and of an abstraction (E.2.26):

Elimination: Recall R7.6, the rule that eliminated environments from

parameter lists. Such elimination was possible because of the existence of a

global symbol structure. For the same reason, we introduce below a few rules

to eliminate the environment in three other constructions.

In Snapshot 5.15, and as a result of R4.7, we find an iterative construction

defining a new environment in each iteration:

for 1=1 to E | => | for 1=1 to E [R7.9]
do e(P)A.dest.(i)__| |__ do e(P)A

Also, in (E.2.21), and as a result of R4.1, an environment might appear as a

single variable standing in a block as a statement:

{ e(P)A.dest.(i)
when i:ENV C

}

| { let old.env = this.env
I e(P)A

=> | C [R7.8]
reset(old.env)

}

- 131 -

Tr":P^ t ' Sequence of Parameters. Environment

 ̂ /n*” node*vec = open, node (node)
{0 let continue2 = forward(COD)

Ccoerce(reg).cont.(continue2).dest.(first.reg)fix.here(continue2)
trans.skip.if,in(first.reg, F)
trans.jump.to(Cerror)
{ let dmp.loc = trans.dump(first.reg)
for inx=l to Inode.vec-1
do { { let continuel = forward(COD)

(S ? h dee;:(cCo « L “)rSt-re8IF- ^ • - ‘•(-tinnel,

} trans*load(F, dmp.loc).dest.(first.reg)
unless Inode.vec=0
do U(node.vec!Inode.vec, first.reglF #rD „ ,

)•cont.(continue) 81 ’ #lPl* *** ’P2]}0
freevec(node.vec)

by R7.6/twice, R7.9, R7.ll (5.16.1)
}; endcase

when i:ENV { C • i- c 1 „0’ 1> C1 > ~> { CQ; Cj } [R7.10]

In Snapshot 5.15, <E.2.22) and (E.2.28) ^ ^ a ^ ^ ^ ^

Introduced undefined environments of the form .dest.(?:d) with dCENV:
when dCENV e(P)A.dest.(?:d) => efPU

 ̂ M IR7.11]

Snapshot 5.16 shown, the result of the Environment analysis.

5.4.5 BCPL

Finally, two mote transformation rules from WFFg to KFF^ In (5.16.u> the

WFF operator '//' ±a used to denote the size of6 Slze the sequence. In WFF this
size is accessed with a selector:

*Isr ..snJ „> sl,e-[si...snj [RA,9J

An integer expression, such as sl.e'E, a constant, or Inode.vec, which is

not used as a control structure, but as a code generation value, needs to be

- 132 -

given a descriptor (a type definition) so that the machine interface can

interrogate it. This distinguishes it from other expressions like a

location, an instruction, or a pointer to the symbol table.

when e^INT e0(P0> e ^ P ^ A | => | en(p0> e2» Pp A [RA.10]
_I |__where e2=make.num(e^)

The primitive function make.num provides such a data definition. The

internal 'domain of interest' INT, indicates the 'compile-time' integers.

The numerals, the for loop control variable and the size of vectors and

syntactic nodes are all in INT, namely: n:INT, inx:INT, !E:INT and

size~E:INT. The result of these rules can be found in (E.2.9) and (E.2.20).

CHAPTER 6

The Lambda Calculus

In this chapter we describe a correspondence between the Standard

Denotational Semantics of the Lambda Calculus(LC) and a Code Generation

Process. Two semantics are considered in turn, both based on [Rey74j as

described in [Sto77] and extended with a few basic constructions to allow

the translation of realistic programs. The first semantics is direct. The

second utilises continuations in a way we bave seen in previous chapters.

Apart from the new transformations required to distinguish between call-by-

value and call-by-name, the important aspect of this chapter is the degree

of confidence of the correctness of our transformational system that results

fro. the comparison between both direct and continuation cases. The

resultant CGPs, two programs derived from two congruent specifications are

different but produce the same code in the examples we tried.

6 . 1 Direct Semantics

In this section, the first version of the semantics of the lambda calculus

is transformed from the original specification of Snapshot 6.1 in the source

metalanguage WEEs, up to the final target version in BCPL (WFF).

6 .1 . 1 Syntactic Transformations

Non-Strict And Thunk: Consider the definition of Strict:

Strict (U.eX.j) , | B°t’T°P " ' " el 18 B°t-T°P " ?
_̂_C^i.e)(e^) Otherwise ̂ ^

Tha function returned by Strict, Is that which, if applied to an

- 134 -

Snapshot 6.1: The Lambda Calculus(Direct). Original Specification
Syntactic Categories
i:Ide.
n :Num.
e:Exp.
o:Opr.

SyntaxT JLA b U A

e ::= 1 I n | e,oe„ | e.e„ | Lam i.e. | Lam Val i.ej
0 , *x , ? i / H \/ i > r < i - i <- i >- i #

Semantic Domains
T.
N.

w:W=[N + T + F + { Err }].
f:F=[W » W].
p:U=[Ide > W].

Semantic Domains of 'Interest
ENV=U.
REG=W.
TEM=F.

Semantic Primitives(undefined)
N: [Num > N] .
0:[Opr » W » W > W].

Semantic Equations
E : [Exp > U > W].

E[i]p=
p[i] •

E[n]p=
N[n].

E[e oe„]p=
(W.O[o]ww')(E[e1]p)(E[e2]p).

E[(iw?i?F>(>w'.(w|F)w/)(E[e2]p),Err)(E[e1]p).

E[Lam i.e1]p=
)jw.E[e^i(p[w/ [i]]) •

E[Lam Val i.e,]p=
Strict(>w.Ele1](p[w/ [i]])).

identifiers
numerals
lambda-expressions
operators

truth values
integers
expression values
function values
environments

environments
registered values
templates

(6 .1.1)

(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

(6 .1.6)

(6.1.7)

- 135 -

value, returns also an improper value. We can think of a strict function as

looking' at its argument as soon as applied. Whereas a non-strict function

will 'disregard' its argument until needed. In implementation terms, this

corresponds respectively to call-by-value and call-by-name (or the more

efficient call-by-need). But the way that these two features are

implemented, influence not only the defined function, but also any and all

of its applied occurrences. In the former case, an argument is 'evaluated'

and passed to the function; in the latter, arguments are not 'evaluated',

but associated with a special kind or function called a 'thunk' after

P.Z.Ingerman [Ing61]. These are like mini-functions without arguments and

with the environment already bound in. For more implementation details of

thunks see [Gri71] or [Bor79]. In the version of the lambda calculus that we

have chosen to work with, both forms coexist, the strict abstraction in

(6.1.7) demands call-by-value and the non-strict abstraction in (6.1.6)

call-by-name. This is why the function Strict can not be eliminated as R3.6

indicates. Hence, we redefine this rule to eliminate the use of Strict only

when there is a non-strict function demanding call-by-name.

Strict(e) => e fT3n
when e:TEM and there is no e2 such that Non-Strlct(e2):TEM

In LC, R3.6 does not apply because there is a non-strict expression in

(6.1.6). This method implies a switch in the form of the transformation

process, which depends on the existence of call-by-name expressions:

1) No call-by-name expressions: (There is no Non-Strict(e):TEM). In this

case, the function Strict can be eliminated, the transformation process is

switched to a state in which every e:TEM is strict and no analysis of name-

value expressions is made. This is the case in all previous example

- 136 -

languages where all occurrences of Strict defining functions in TEM were

eliminated.

2) There are call-by-name expressions: (Non-Strict(e):TEM exists). If

Strict(e):TEM exists, then in this context Strict imposes in effect a call-

by—value definition. In which case we can not eliminate Strict because it is

a carrier of information for later analysis. Hence the transformation

process is switched to the opposite state, in which unless otherwise

indicated, every e:TEM is non-strict. This is the case in the current

example language; Strict will remain in context, marking the 'value'

abstraction (6.1.7).

At the moment of the call there is no indication whatsoever of the sort of

argument required. We have to record this before the semantic analysis

begins. The following transformation will mark such an argument:

ee1 | | e(Thunk(e))
or I => I or [R3.8]

(^ i. ... ei ...)e. | | e(X i. ... ei ...)(Thunk(e.))
where e^f i _| | 1
when e:TEM and there is an such that Non-Strict(e2):TEM

In other words, R3.8 is applied to those expressions occurring as arguments

of a template and if, somewhere in the specification, there is a non-strict

function which is a member of TEM. In LC, R3.8 applies in (6.1.5). The

function Thunk is defined by:

Thunk : [Exp»THU] (Dl4)

Where THU is a domain of 'interest'. For example: Thunk(e)A:THU is true,

regardless of the functionality of e.

- 137 -

{ case [i]: ype node lnto bTRl.l, R3.I---(6^7
PC £±]) ; endcase

case [n]:
N([n]); endcase

by Kl.l, R3.1 (6727U

by Rl.l, R3.2 (6.2.2)

by Rl.l, R3.2 (6.2.3)
case le^e]:

{ let w = E([e], p); iet w' = re j .
by Ri 1 Ri 3 *Do o/o w » w) }; endcasey 1.1, R1.2, R3.2/3 times, R3.3, R3.4 (6.2.4)

case [e^J:

endcase ' ‘‘‘‘I1’ P>i £ ' f ™«E(,[«], p));)>Err ,
^ Rl.l, R3.2/3 times, r1 3/twice, R3.8 (6.2.5)

case [Lam i.e]:
p([w/ [i]J)); endcase by R1 , .

°y Kl»l, R3.2/twice (6.2.6)
case [Lam Val i.e.]:

Stnct(>w.E([e1}, p([w/[i]]))). endcase by Rl.l, R3.2/3 times (6.2.7)

This also requires a redefinition of DOM:

DOM(Thunk(e)) » DOM(e)

So that later in the analysis, transformations
find the appropriate domain.

[D15]

not concerned with THU can

Before the Destination Analysis the t r a n s l a t i o n process looks like

the moment of application (6.2.5), the function Xhn^ Mrks the argunent ^

needs-thunk'. The 'name' abstraction (6.2.6) has no special markers and the

fnnction strict marks the '.aloe' abstraction (6.2.7, as 'needs-coercion'.

6.1.2 Destination Analysis

Firstly, some redefinition of earlier rales: Recall R5.3 and R5.4, defined

m section 3.4.!. We have to extend their conditions to accept the new thnnk
constructions:

- 138 -

e(P) => e(P).dest.(reg) In COD [R5.3]
when (e(P):REG or e(P):THU) and not e:ENV

{ let l=e(P); C } => { e(P).dest.(1) In COD; C } [R5.4]
when (e(P):REG or e(P):THU) and not e:ENV, rename i=>(i=ak)»reg+k, reg

In a similar way, R5.8 and R5.10, both defined in section 4.2.1, now require

a condition also accepting thunks:

e => [first.reg/reg]e [R5.8]
when e+i and (e:TEM or e:THU)

when e:TEM or e:THU e => trans.load(DOM(e), e) In REG [R5.10]

Secondly, the strict marker is signalling that a 'name' argument is supplied

to a 'value' abstraction. This means that functions marked with Strict have

to be interpreted as requiring a coercion of the argument to call-by-value,

hence its argument (the thunk) must be executed immediately on entry and its

destination, as for any other form of call, is always first.reg.

I | StrictQi.
I | { trans.call(i).dest.(first.reg)

Strict(e) | => | [first.reg/i]e [R5.20]
where e =_ >i.e __| I })
when e:TEM and there is an e2 such- that Non-Strict(e2):TEM

6.1.3 Continuation Analysis

Thunks are analysed in a similar way to abstractions. The difference lies in

the names (and therefore the effect) of the procedures to plant code for

entry and exit:

- 139 -

when V THU e(P0, e,, P])A =>

{ let ntry.code = forward(DOM(e))
let exit.code = forward(COD) *
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.thunk.entry(ntry.code, node)

trans.thunk.exit(exit.code, node)1? ̂
iix.here(skip.code)
e(PQ, ntry.code, P)A

} where e2=e3 if e =ihunk(e)
e2Z ei otherwise

- „arker as le£t by R5.20 needs farther processing iooh up
process expects always . w val„e_ hence ^ ^ ^ ^ ^

'name' argents, in th. case of . ^ ^ ^ ^ ^

- ^ * £he -value. iMf£iciency ^ ^ ^ ^

the iook np process check for the partlCnlar type of Valua, iut we are

interested in comparing (in section 6.3) this direr,cnis direct case with the
continuation case. Hence we define:

I r • r> .
[R6.20]when

where

Strict(C) => / c • r • r i
C:TEM and C = { c ; C } 1 1’ C3* C4 '
Cj- trans.call(p).^est?(first.reg)
2— a n ^

I { let ntry.code = forward(DOM(first.ree))
let exit.code = forward(COD)

I let skip.code = forward(COD)
I trans.jump.to(skip.code)

3~ <| trans.thunk.entry(ntry.code node)
I trans.load(DOM(first.reg), first L i h
I trans. thunk. exit (exit .code, n o d ^ (^ g)
I fix.here(skip.code)
l__}

C4~ ("try.code/first.reg}C2

»ote that in this and the next role, we use the epeclal ^

{ / }, which was defined in section 4.2.4.

v

- 140 -

6.1.4 Optimising Transformations

This analysis, is necessary regardless of the implementation choice given

for first.reg and first.par. We need to ensure that the allocations of

destinations within thunks, have the same extent as the thunk.

{ c
{^let ntry.code = E
let exit.code = E
let skip.code = E
trans.jump.to(Pj)
t rans.thunk.ent ry(P)
C1trans.thunk.exit(P^)

}
}

when i:REG
and i is free in C1

=>

{ c,0,{ let ntry.code
let exit.code = E0
let skip.code = E„
{ let old.env = tnis.env
let dmp.loc = trans.dump(i)
trans.jump.to(P^)
trans.thunk.entry(P„)
{dmp.loc/i}C^
trans.thunk.exit(P»)
{dmp.loc/ijC^
reset(old.env)

[R9.6]

______________ Snapshot 6.3: The Lambda Calculus(Direct). BCPL_______________
let trans.E(node).dest.(reg) be switchon type~node into

by R5.1, R7.5, RA.l (6.3.1)
{ case T..Ident:

look.up(node).dest.(reg); endcase by R5.3, R7.4, RA.1/twice (6.3.2)

case T..Numeral:
trans.N(node).dest.(reg); endcase by R5.3, RA.1/twice, RA.2 (6.3.3)

case T..Plus: case T..Minus: case T..Mult: case T..Div: case T..And:
case T..0r: case T..GreaterThan: case T..LessThan: case T..Equal:
case T..LessOrEqual: case T..GreaterOrEqual: case T..NotEqual:

trans.E(pl~node).dest.(reg)
test weight'vp2~node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans •E(p2''node) .dest. (reg)
t rans. 0(type''node, dmp.loc, reg) .dest. (reg)
reset(old.env)

}
or { let nxt = next(reg)

trans .E(p2/'node) .dest. (nxt)
trans.0(type~node, reg, nxt).dest.(reg)

}; endcase
by R5.3, R5.4/twice, R5.6, R7.6/twice, R9.1, RA.1/7 times, RA.2/5 times

(6.3.4)

- 141 -

~ ase K2..Application, Snar"hnt 6,3 _________________
trans.E(pi"node).dest.(reg)
{ let econd.code = forward(D..COD)
let fcond.code = forward(D..COD)
trans.skip.If,in(reg, D..F)
trans.jump.to(fcond.code, true.jump)
test reg=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
{ let ntry.domW = forward(D..W)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
t rans.jump.to(skip.code, true.jump)
trans.thunk.entry(ntry.domW, node)
t rans. E(p2,'node).dest. (first, reg)
trans.thunk.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..W, ntry.domW).dest.(reg)

trans.call(dmp.loc, reg).dest.(first.ree)
reset(old.env)

or { let nxt = next(reg)
{ let ntry.domW = forward(D..W)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.thunk.entry(ntry.domW, node)
trans.E(p2~node).dest.(first.reg)
t rans.thunk.exi t(exit.code, node)
fix.here(skip.code)
trans.load(D..W, ntry.domW).dest.(nxt)

trans.call(reg, nxt).dest.(first.reg)

trans.jump.to(econd.code, true.jump)
fix.here(fcond.code)
trans.load(D..W, Err).dest.(reg)
fix.here(econd.code)

}; endcase
by R5.3/twice, R5.4/twice RS 7 rr q uc ^
*6.19. R7.6/twice, R8.2/3 times.’ nil', RA.’l M ti^es,’ ^ . l / l f t L s

142 -

______________________ Snapshot 6.3 (c o n t i n u e d) ______________________
case N2..Abstraction:

{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, pl~node)
trans .E(p2'Knode) .dest. (first, reg)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

}; endcase
by R5.3/twice, R5.8, R5.9, R5.10, R6.4, R7.1, R7.2, R8.2, RA.1/3 times
RA.2/5 times (6.3.6)

case N2..ValAbstraction:
{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
trans.call(first.par).dest.(first.reg)
(0 let ntry.domWl = forward(D..W)

let exit.codel = forward(D..COD)
let skip.codel = forward(D..COD)
{ let old.env = this.env
let dmp.loc = trans.dump(first.reg)
t rans.jump.to(skip.code 1, true.jump)
trans.thunk.entry(ntry.domWl, node)
trans.load(domain.of(dmp.loc), dmp.loc).dest.(first.reg)
trans.thunk.exit(exit.codel, node)
f ix.here(skip.code 1)
declare(domain.of(ntry.domWl), ntry.domWl, pl~node)
trans.E(p2~node).dest.(first.reg)
reset(old.env)

}0
trans.exit(exit.code, node)
f ix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

}; endcase
by R5.3/twice, R5.8, R5.9, R5.10, R5.20, R6.4, R6.20, R7.1, R7.2
R8.2/twice, R9.2, R9.6, RA.1/3 times, RA.2/8 times (6.3.7)

- 143 -

Synfacticl'categorlesLanll>da ^ " ^ “ “ " ^ i o n) . Or i g i n Spec i f i c ^ , ,
i :Ide.
n:Num. identifiers
e:Exp. numerals
o:Opr. lambda-expressions

operators
Syntax
e ::= ± | n | e oe | e e„ | Lam i.e | Lam Val i.e
° » - + I - I 1 I /{? \/ I > , k I = , <= , >=!, #
Semantic Domains
fT
N.
A.

w:W=[K > A].
k:K=[E > A].
e:E=[N + T + F + { Err }].
F=[W > W].

p :U= [Ide > W].

Semantic Domains of 'Interest'
ENV=U. ------
REG=E.
TEM=F.
THU=W.

Semantic Primitives (undefined)
N: [Num > N].
0:[Opr > E > E > W].

truth values
integers
answers
expression closures
expression continuations
expression values
function values
environments

environments
registered values
templates
thunks

Semantic Equations
E:[Exp » U > W],

E[i]pk=
p[i]k.

E[n]pk=
k(N[n]).

E[e,oe„]pk=
E[e1Ip(>e.E[e2]p(>e'.0 [o]ee'k)).

E êle2J Pk=
Ete1]p(>e.e?F>(>w'.(e|F)w'k)(>k.E[e2]pk),kErr).

E[Lam i.e]pk=
k(>wk'.E[e1](p[w/[i]])k').

E[Lam Val i.e.]pk=
k(>wk'.w(>e.E[e1](p[>k.ke/[i]J)k')).

(6.4.1)

(6.4.2)

(6.4.3)

(6.4.4)

(6.4.5)

(6.4.6)

(6.4.7)

- 144 -

6.2 Continuation Semantics

Let us turn our attention, to another version of a DS specification for the

same language. It is the continuation semantics, as described in

Snapshot 6.4.

Recall that in the previous section, we had to mark 'name' arguments (R3.8).

This was done by reference to the existence of a non-strict(e) in TEM. In

this version of the LC, the domain W of expression closures, already

indicates where thunks are, this is why among the domains of 'interest', we

have defined THU=W. In Snapshot 6.5 we show the state of the transformation

process before the Destination Analysis so that it can be compared with

Snapshot 6.2. In particular, note the definition of w' in (6.2.5) and

(6.5.5), the request for a thunk in the argument for a call is indicated in

the former by Thunk (as a result of R3.8). In the latter, the thunk is

indicated by the abstraction >k.e which is in THU (this abstraction has been

carried over from the original specification), so both expressions are in

THU and are converted in a similar way to thunks, respectively by R6.19 and

R6.21 (to be defined below). Also, note in (6.2.7) and (6.5.7) how 'value'

abstractions are, at this point, quite different: In the former, Strict

marks such abstraction to allow R5.20 and R6.20 to transform accordingly. In

the latter, the argument w is involved in an application (to find the value

associated with the 'name' argument); this will be transformed by R5.21 and

the value in the declaration of [i] is again remade into a 'name' argument,

namely: >k.{ e; k }. and transformed by R6.21 (both these rules are defined

below).

- 145 -

{ case [i]: ^y Rl.l, R3.1, R4.3 (6.5.1)
P([i]).cont.(k).dest.(?); endcase by Rl.l, R3.2, R4.4 (6.5.2)

case [n]:
»([»]); k; endcase by Rla> B3.2/tulce> R41

(6.5.3)
case [e oe]
E d e J , p

P)-co»t.(0([n], e, e').cont.(k).dest.(?)).dest.(e')
).dest.(e); endnase by Rl.l, R3.2/3 times. R4.2/twice, R4.4 (6.5.4)

case [e e]:
E([ei}/p
) .cont.(e?F>

{ let w = >k.E([e], p).cont.(k).dest.(?)
e|F(w').cont.(k).dest.(?)

},Err; k).dest.(e); endcase
by Rl.l, R3.2/4 times, R3.3, R4.1, R4.2, R4.4/twice (6.5.5)

case [Lam i.e]:
>w.>k'.E([ei], p([w/[ij])).cont.(k').dest.(?); k; endcase

by Rl.l, R1.2, R3.2/3 times, R4.1, R4.4 (6.5.6)
case [Lam Val i.e]:

*',>k'.w0.cont.(E<[e1], p(C^k.{ e; k }/[i]])) .cont. (k') .dest.(?)

k; endcase by Rl.x, Rl.2, R3 .2 / 5 times, R4.1/twice, R4.2, R4.4 (6.5.7)

6.2.1 Destination Analysis

Kith the new domain of 'interest' THU, we can still apply R5.4, R5.8 and

K5.10, but we need a new rule for explicit calls of thunks which should be
compared with R5.20.

/\ , ̂ I { trans »C311(6) td6st« (firste().cont.(e).dest.(i) | => , [first.reg/i e ^irst.reg
when e:THU 1 1 } [R5.21]

6.2.2 Continuation Analysis

The conversion for thunks, can not he the same as that one used in the

direct semantics. The case that we are now considering, involves a lambda

abstraction for the return continuation:

- 146 -

e(PQ, >i.e 1*

when >i.e1:THU

Pl)A

{ let ntry.code = forward(DOM(e))
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.thunk.entry(ntry.code, node)
[exit.code/i]e [R6.21]
trans.thunk.exit(exit.code, node)
fix.here(skip.code)
e(PO’ ntry.code, P^)A

And we redefine R6.12 to cope also with thunks:

I l~e3
e(P , e()([e1/e2], P ^ A | => | e(PQ, eQ([ntry.code/e„], P ^ A [R6.12]

| | where except for the last statement
when e^:TEM or e :THU _| |__e^ is the same as R6.ll or R6.21

6.3 Comparison

J. Reynolds [Rey74] and J. Stoy [Sto76] have shown the congruence of direct

and continuation semantic descriptions by setting up predicates using the

framework of [MaS76]. Since direct and continuation semantics can be proven

congruent, it seems then natural to compare the corresponding generated code

generation processes. However, as indicated in Chapter 1, we are not

concerned with formal proofs of correctness. Not because such proofs are

uninteresting, but because we devoted our research to develop a

transformation system able to generate efficient and usable code generators.

We hope that once this has been achieved, future generations will continue

the work and hopefully prove it correct. However, a glance comparing both

final versions shown in Snapshot 6.3 and Snapshot 6.6 (below) is sufficient

to give us confidence in the correctness of our transformations. Moreover,

lacking correctness proofs, a further and more interesting comparison can be

made, i.e: the code generated by each one.

- 147 -

When running both CGP over input programs like the following:

comment: True = Lam x. ^ x
comment: False = Lam x. Lam . y
comment: Let i=e In e' = (Lam i.e')(e)
comment: Let Val i=e In e' = (Lam Val i.e')(e)

Let Val Y = Lam f.(Lam x.f(xx))(Lam x.f(xx))
n Let Val Fact = Y(Lam f.Lam Val n.(n=0) 1 (n*f(n-l)))
In Let Val Cons = Lam Val x.Lam Val y.Lam Val z.(z=l)xy
In Let Val Car = Lam Val x.x 1
In Let Val Cdr = Lam Val x.x 2

I1” £r(SlrUpp1y 'rac^))'’1'3" Val ^ ° (C°nS ">

we found that the code generated by both is without exception precisely the

same. This result can be expressed thus:

DIRECT ---------> CGP-d----------- > |
I samecongruent (DEC_10

specifications , CQde

CONTINUATION--------- > CGP-c___________ > |

An excellent result which, unfortunately, does not prove that the

transformation process is correct, but that it is consistent, at least for

the examples we tried. It might be the case of both CGPs generate the same

'wrong' code. That this is not so, was checked again empirically, by running

the code that they produce, verifying that correct answers were produced.

However, it appears that the treatment of forward references, or

Continuation Analysis is correct. The CGP derived from the continuation

semantics consists of a procedure which keeps always a forward reference to

the next expression to translate, where as the CGP associated with the

direct semantics consists of a procedure with no 'context' information. This

information is only used to plant jump instructions to follow the flow of

control. The flow of control of the CGP generated from the direct semantics,

depends heavily on the form of the concrete semantics, and hence by the

- 148 -

particular order imposed by the transformation process. The form of the

expression continuations dictates the flow of control in the continuation

CGP. The fact that both orders coincide, derives only from our design

decision of imposing a left to right order. If the specifications are

rewritten with an unspecified order of evaluation, for example, using a list

evaluation operator like le of [Sto77] pp-265, then the flow of control

could differ if different assumptions regarding l£ were chosen.

With respect to efficiency, again there is a penalty paid by the form of the

semantic specifications. Consider the treatment of the environment, In the

continuation case, denoted values are in [K>A], the domain of expression

closures. And this domain is the one associated with thunks. So in this

case, the CGP was directed to make thunks, before declaring the parameter of

a 'value' abstraction. In the direct specification, declarations are not

forced to be thunks, we could avoid R6.20 and let look.up decide what kind

of object has been declared. We implemented such a version and indeed the

direct CGP that resulted was more efficient, because thunks are not created

while declaring the argument of 'name' abstractions. However, R6.20 allows

the transformation process to produce two CGPs, different in their form but

equivalent in their translation. This is what we set out to achieve.

- 149 -

~ f t rfnar ^ Qt 6,6: Th£ Lambda CaJ-culus(Continuation'). RCPT.
k I ° n U °ntinue» jump) .dest. (reg) be-----------switchon tvnp nnHo ̂r- , ~ CTTj. u . ̂ v , jLiiupy •uebi, ̂ reg) be

{^case°T. ̂ Ident° ^ * R5*12’ R6‘10’ R7*5’ *A.l (6-6.1)
look.up(node).cont.(continue, jump).dest.(reg); endcase

by R5.13, R6.10, R7.4, R8.1, RA.1/twice (6.6.2)
case T..Numeral:

trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase
by R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2 (6.6.3)

°aSe J’*^1US: CaSe case T. .Mult: case T. .Div: case T And-
case ^'LessOrE6 C3Se T..LessThan: case T..Equ^f

fO l e t T m -GreaterOrEqual: case T..NotEqual:{0 let continue2 = forward(D..COD)

{ let continuel = forward(D..COD)
test weight''p2~node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2~node).cont.(continuel, false.jump).dest.(ree)
fix.here(continuel) v 8’
trans.0(type-node, dmp.loc, reg).cont.(continue, jump

).dest.(reg) ’ J P
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2-node).cont.(continuel, false.jump).dest.(nxt) fix. he re (continuel)
trans.0(type~node, reg, nxt).cont.(continue, jump

 ̂).dest.(reg) ’ J p

}0; endcase
by R5.13, R5.14/twice, R6.9/twice, R6.10, R7.6/twice R8 l rr 9/<- ■R9.1, RA.1/7 times, RA.2/7 times K/.b/twice, R8.1, R8.2/twice

(6.6.4)

- 150 -

________________________ Snapshot 6.6 (continued)__________________________
case N2..Application:

{0 let continuel = forward(D..COD)
trans.E(pl'node).cont.(continuel, false.jump).dest.(reg)
fix.here(continuel)
{ let fcond.code = forward(D..COD)
trans.skip.if.in(reg, D..F)
trans.jump.to(fcond.code, true.jump)
test reg=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
{ let ntry.domW = forward(D..W)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.thunk.entry(ntry.domW, node)
trans.E(p2~node).cont.(exit.code, false.jump

).dest.(first.reg)
trans.thunk.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..W, ntry.domW).dest.(reg)

}
trans.call(dmp.loc, reg).cont.(continue, true.jump

).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

{ let ntry.domW = forward(D..W)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
t rans.thunk.ent ry(n t ry.domW, node)
trans.E(p2/'node) .cont. (exit.code, false, jump

) .dest.(first.reg)
trans.thunk.exit(exit.code, node)
f ix.here(skip.code)
trans.load(D..W, ntry.domW).dest.(nxt)

}
trans.call(reg, nxt).cont.(continue, true.jump

).dest.(first.reg)
}

fix.here(fcond.code)
trans.load(D..E, Err).dest.(reg)
trans.jump.to(continue, jump)

}0; endcase
by R5.3, R5.4, R5.7, R5.8, R5.10, R5.13, R5.14, R5.15, R6.1, R6.2, R6.6
R6.7, R6.9, R6.10/twice, R6.21, R7.6/twice, R8.1/twice, R8.2/4 times
R9.1, RA.1/4 times, RA.2/15 times (6.6.5)

- 151 -

— MO-------- -------- Snapshot 6.6 (continued)case N2..Abstraction: -------- -— — ---------------------------
{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env

declare(domain.of(first.par), first.par, pl~node)
} reset(oldfenv)6) *C°nt*(eX^t *C°de* falseO - P) - d-t.(first.reg)

trans.exit(exit.code, node)
fix.here(skip.code)

 ̂ trans.load(D..F, ntry.domF).dest.(reg)

trans.jump.to(continue, jump); endcase

(6 .6 .6)
case N2..ValAbstraction:

{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
trans.call(first.par).dest.(first.reg)
{0 let ntry.domWl = forward(D..W)

let exit.codel = forward(D..COD)
let skip.codel = forward(D..COD)
{ let old.env = this.env
let dmp.loc = trans.dump(first.reg)
trans.jump.to(skip.codel, true.jump)
trans.thunk.entry(ntry.domWl, node)
trans.load(domain.of(dmp.loc), dmp.loc).dest.(first.reg)
trans.thunk.exit(exit.codel, node)
fix.here(skip.codel)
declare(D..W, ntry.domWl, pl^node)
rtar^ ; o L P?e;:)e)-C',,,t-<e,llt-COde- Jal^.jump).d.8t.(£irst.re8)

}o
trans.exit(exit.code, node)
fix.here(skip.code)

 ̂ trans.load(D..F, ntry.domF).dest.(reg)

trans.jump.to(continue, jump); endcase
by R5.3/twice, R5.7S R5.8, R5.9, R5.10, R5.13 R5 14 rs ?i ra , ■

(6.6.7)

CHAPTER 7

From Standard to Implementation DS

Our conjecture concerning the relationship between compilers and semantic

equations is that not only the semantic equations can dictate the structure

of a compiler, but conversely, intuitions and experience of compiler writers

could influence the DS equations themselves.

However, we do appreciate the need to have a 'standard' denotational

semantics without any bias towards implementation ideas. So we propose to

distinguish between two different forms of DS which, for any particular

language, we shall have to prove congruent, namely:

Standard Denotational Semantics (SDS):

A canonical definition free of bias towards any particular implementation.

Implementation Denotational Semantics (IDS):

Embodying all implementation strategies desired.

In this chapter, we will show how four implementation issues can be

encapsulated at this level, namely:

1 Efficiency in boolean expressions.

2 Efficiency in arithmetic expressions.

3 The allocation of locations.

4 Declaration and invocation records.

- 153 -

------- Snapshot 7.1: Boolean ExpresslonsfSDS^,
Syntactic Domain ~— Original Specification
b:Bex.
i:Ide.

Syntax
b : := i y \ b2 b1\/b2 | br >b2,b3
Semantics Domains
s : S= [Ide > T].
c:C=[S > S].
k :K=[T > C].
t :T=[{ TRUE } + { FALSE }].

Semantic Domains of 'Interest'
” REG=T. ' ~
STA=S.

Semantic Equations
B :[Bex > K > C].

B[i]k=
>s.k(s[i])s.

B[b /\b]k=
B[b1]T>t.t>B[b2]k,kFALSE}.

B[b \/b]k=
B[b1]f>t.t>kTRUE,B[b2]k}.

B[b.->b2,b3]k=
B[b1]f>t.t>B[b2]k,B[b3]k}.

boolean expressions
identifiers

states
command continuations
expression continuations
truth values

registered values
states

(7.1.1)

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

7.1 Boolean Expressions

Consider the SDS specification of boolean expressions of Snapshot 7.1.

Boolean expressions viewed in this way are like any other expression with

the exception that they evalnate to boolean valnes. So for example, the
expression:

a/\b/\((c/\d\/e/\f)/\(g\/h))

compiled with the corresponding CGP shown in Snapshot 7.2 will generate the

DEC-10 code shown below that snapshot. But it happens that boolean

expressions can be evaluated in a completely different way. Their evaluation

- 154 -

________________ Snapshot 7.2: Boolean Expressions(SDS). BCPL________________
let trans.B(node).cont.(continue, jump).dest.(reg) be
switchon type"node into (7.2.1)
{ case T..Ident:

trans.load(D..Ide, node).dest.(reg); trans.jump.to(continue, jump)
endcase (7.2.2)

case N2..And:
{0 let continuel = forward(D..COD)

trans.B(pi“node).cont.(continuel, false.jump).dest.(reg)
fix.here(continuel)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.B(p2~node).cont.(continue, true.jump).dest.(reg)
fix.here(fcond.code)
trans.load(D..T, FALSE).dest.(reg)
trans.jump.to(continue, jump)

}0; endcase

case N2..Or:
{0 let continuel = forward(D..COD)

trans.B(pl~node) .cont. (continuel, false, jump) .dest. (reg)
fix.here(continuel)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.load(D..T, TRUE).dest.(reg)
trans.jump.to(continue, true.jump)
fix.here(fcond.code)
trans.B(p2~node).cont.(continue, jump).dest.(reg)

}0; endcase

case N3..Conditional:
{0 let continuel = forward(D..COD)

trans.B(pl^node).cont.(continuel, false.jump).dest.(reg)
fix.here(continuel)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.B(p2~node).cont.(continue, true.jump)
fix.here(fcond.code)
trans.B(p3~node).cont.(continue, jump).dest

}0; endcase

(7.2.3)

(7.2.4)

dest.(reg)

(reg)
(7.2.5)

LI:
L2:

MOVE AC1 ,a |L3: SETZ AC1,0 1 MOVE AC1 ,g
JUMPE AC1,L1 |L4: JUMPE AC1,L5 1 JUMPE AC1,L8
MOVE AC1 ,b 1 SETO AC1,0 1 SETO AC1,0
JRST 0,L2 1 JRST 0,L7 1 JRST 0,L11
SETZ AC1,0 |L5: MOVE AC1 ,e |L8: MOVE AC1 ,h
JUMPE AC1,L10 1 JUMPE AC1,L6 1 JRST 0,L11
MOVE AC1 ,c 1 MOVE AC1, f |L9: SETZ AC1,0
JUMPE AC1,L3 1 JRST 0,L7 1 JRST 0,L11
MOVE AC1 ,d |L6: SETZ AC1,0 | LI 0: SETZ AC1,0
JRST 0,L4 IL7: JUMPE AC1,L9 | LI 1: ; result in AC1

- 155 -

need not produce a value but can select the next path of the computations.

This is exactly how Cond can be thought to behave: given two expressions, it

picks one on the basis of a given boolean value.

To model this behaviour, we redefine the function B, as a semantic valuator

taking two continuations, one to be applied if the supplied boolean

expression evaluates to true, and another if it evaluates to false.

~ ■ S° r m n -n'3! B°°leaI1 <*lgl°.l Specification
B:(Bex > C > C > C]. (7 3 i)

B[i]cc'=
>8.8[i]>cs,c's. (7 3 2)

B[b /\b]cc'=
BtbJTBtb^cc'Jc'.

B[b \/b]cc'=
BfbJ^Btb^cc'}.

(7.3.3)

(7.3.4)
B[b.->b„,b„]cc'=
Btb1]fB[^2]cc'}{B[b3]cc'}. (7.3.5)

This model of boolean expressions with two continuations as described in

Snapshot 7.3, corresponds precisely to a way that efficient compilers

implement them, namely as true and false chains. A simple extension to the

Continuation Analysis to cope with pairs of continuations will produce the

efficient CGP for boolean expressions as described in Snapshot 7.4 with the

corresponding 'ideal' code for the same expression shown below it.

Note that not only the number of generated instructions has been reduced

(from 29 to 16), due to the absence of register assignments (SETZ and SETO)

and jumps (JRST), but also the length of the CGP is shorter because in

- 156 -

Snapshot 7.4: Boolean Expressions(IDS). BCPL
.rrnnfinnp. rnntlnnpl. Kp

oiiciponoL. / cooiean HiXpressionŝ i.L/o>
let trans.B(node).cont.(continue, continuel, jump) be
switchon type^node Into
{ case T..Ident:

trans.load(D..Ide, node).dest.(first.reg)
test jump
then { trans.jump.if.true(first.reg, continue)

trans.jump.to(continuel, not jump)

(7.4.1)

or
}
trans.jump.if.false(first.reg, continuel); endcase (7.4.2)

case N2..And:
{ let continue2 = forward(D..COD)
trans.B(pl~node).cont.(continue2, continuel, false.jump)
fix.here(continue2)
trans.B(p2~node).cont.(continue, continuel, jump)

}; endcase (7.4.3)

case N2..Or:
{ let continue2 = forward(D..COD)
trans.B(pl~node).cont.(continue, continue2, true.jump)
fix.here(continue2)
trans.B(p2~node).cont.(continue, continuel, jump)

}; endcase (7.4.4)

case N3..Conditional:
{ let continue2 = forward(D..COD)
let continue3 = forward(D..COD)
trans.B(pl^node).cont.(continue2, continue3, false.jump)
fix.here(continue2)
trans.B(p2>'node) .cont.(continue, continuel, false, jump)
trans.jump.to(continue, true.jump)
fix.here(continue3)
trans.B(p3'“node) .cont.(continue, continuel, jump)

}; endcase (7.4.5)

MOVE AC1 ,a 1 MOVE AC1 ,d |L2: MOVE ACl.g
JUMPE AC1,L4 1 JUMPN AC1,L2 1 JUMPN AC1,L3
MOVE AC1 ,b I LI MOVE AC1 ,e 1 MOVE AC1 ,h
JUMPE AC1,L4 1 JUMPE AC1,L4 1 JUMPE AC1,L4
MOVE AC1 ,c 1 MOVE AC1 ,f |L3: ; here if true
JUMPE AC1,L1 1 JUMPE AC1,L4 |L4: ; here if false

(7.4.2) and (7.4.3) there is no need to generate those instructions (no

trans.load) and in general there are less forward-fix constructions.

- 157 -

S? S t . c ^ r S t J ; ^ e f l t t " e t l C E * P r e s s l ° " s <s ° s >- O r l f f l - l
e:Exp.
i:Ide.
n:Num.
o:Opr.

Specification

Syntax
e : := i
o : := +

n | e oe
- 1 * 1 7

Semantic Domains
n:N.
s : S= [Ide » N].

Semantic Domains of 'Interest'
REG=N. ---
STA=S.

Semantic Primitives (undefined)
N:[Num > N].
0:[Opr > N > N > N].

Semantic Equations
E:[Exp > S > N].

E[i] =
Strict(>s.s[i]).

E[n] =
Strict(>s.N[n]).

E[e oe]=
EteJ + >n.(E[e2] + >n'.Strict(>s.0[o]nn')).

expressions
identifiers
numerals
operators

integers
states

registered values
states

(7.5.1)

(7.5.2)

(7.5.3)

(7.5.4)

7.2 Arithmetic Expressions

To substantiate the claim of producing an efficient compiler, we must ensure

that expressions are compiled into efficient code. For example, consider the

SDS specification of arithmetic expressions of Snapshot 7.5, with associated

CGP as shown in Snapshot 7.6 and example of code generation in the left hand

column below it. To generate the 'ideal' code of the right hand side, a

better algorithm can easily be implemented; we will follow the one given in

[Bor79]. The modified parts of the semantic specification are shown in

Snapshot 7.7 where the new operators '— ' and '//' are respectively the

- 158 -

Snapshot 7.6: Arithmetic Expressions(SDS). BCPL
let trans.E(node).dest.(reg) be switchon type^node into
{ case T..Ident:

trans.load(D..Ide, node).dest.(reg); endcase

case T..Numeral:
trans.N(node).dest.(reg); endcase

case T..Plus: case T..Minus: case T..Mult: case T..Div:
trans.E(pi“node).dest.(reg)
test welght''p2'snode=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2~node).dest.(reg)
trans.O(type~node, dmp.loc, reg).dest.(reg)
reset(old.env)

}
or { let nxt = next(reg)

t rans. E(p2''node) .dest. (nxt)
trans.O(type~node, reg, nxt).dest.(reg)

}; endcase

(7.6.1)

(7.6.2)

(7.6.3)

(7.6.4)

MOVE AC1,a | MOVE AC1 ,c
MOVE AC2,b | IMUL AC1 ,d
IMUL AC1,AC2 | MOVE AC2,e
MOVE AC2,c | IMUL AC2,f
MOVE AC3,d | SUB AC1,AC2
IMUL AC2,AC3 | MOVE AC2,g
MOVE AC3,e | ADD AC2 ,h
MOVE AC4,f | IDIV AC1.AC2
IMUL AC3,AC4 | MOVE AC2,a
SUB AC2,AC3 | IMUL AC2,b
MOVE AC3,g | xDIVr AC1.AC2
MOVE AC4,h |
ADD AC3.AC4 | Code for:
IDIV AC2,AC3 | Left hand side
IDIV AC1,AC2 | Right hand side

a*b/((c*d-e*f)/(g+h))

reverse of and '/'. In fact, these equations, together with the

Optimising Transformations abstract the 'register-allocation' techniques of

'tree weighting' and 'dumping', as it can be seen in Snapshot 7.8 when we

transform accordingly.

It is interesting to observe, in the translation of the two crucial areas of

boolean and arithmetic expressions, the two different methods used in our

IDS specifications to improve the kind of code that our CGPs produce, In the

- 159 -

-----— ?Pshot 7.7: Arithmetic Expressions(IDS). Origin*! Specification
Syntax Modifications to Snapshot 7.5
o ::= + | - | —

Semantic Domain
T=[{ TRUE } + { FALSE }].

Semantic Domains of 'Interest'
REG= [N + T] . ----- ----
BOO=T.

Semantic Primitives (undefined)
IfReverseNeeded:[Exp » BOO].
RLeaf:[Exp > Opr > S > N > N].
Reverse:[Exp > Exp].
IsLeaf:[Exp > BOO],

Semantic Equation

E[e,oe2]=

(IEReV] T Neededtei°e2]>E(ReVerSeIel°e2]|Exp)‘
>n.lsLeaf[e2]>Strict(>s.RLeaf[e2][o]sn),(E[e2] +

>n'.Strict(>s.O[o]nn')))
(7.7.4)

booleans

registered values
compile—time booleans

former, the functionality of the main valuator B was redefined as a function

of two command continuations (c), instead of one expression continuation

(K=[T>CJ), so that the associated CGP could keep track of its operational

context. In the latter, the new primitive function IsLeaf was introduced to

detect the moment when the translator 'sees' the 'leaf' of an expression, so

that the appropriate operation actine on memory could be generated, instead

of a load followed by an operation acting on registers, toother primitive

function IfReverseNeeded, was introduced to reverse a node to reduce the
number of registers required.

Two questions immediately arise:

— Are the SDS and IDS equivalent specifications?

Is it possible to automatically generate the IDS from the SDS?

- 160 -

____________ Snapshot 7.8: Arithmetic Expressions(IDS). BCPL_______________
A Fragment

case T..Plus: case T..Minus: case T..RevMinus: case T..Mult: case T..Div:
case T..RevDiv:

test IfReverseNeeded(node).dest.(reg)
then trans.E(Reverse(node)).dest.(reg)
or { trans.E(pl~node).dest.(reg)

test IsLeaf(p2'node).dest.(reg)
then RLeaf(p2~node, type^node, reg).dest.(reg)
or test weight/'p2~node=max.reg

then {let old.env = this.env
let dmp.loc = trans.dump(reg)
trans.E(p2'node).dest.(reg)
trans.0(type~node, dmp.loc, reg).dest.(reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2'>node) .dest.(nxt)
trans.0(type~node, reg, nxt).dest.(reg)

}
}; endcase (7.8.4)

Firstly, the congruence of our IDS specifications with respect to their SDS

ones have been proven congruent in [Ras80]. Secondly, we believe that the

IDS specification of boolean expressions, which neatly clarifies what

happens with these expressions, can be considered - within the frame of a

von Neumann sequential architecture - a SDS specification. The fact that it

abstracts an implementation idea does not add more light than the fact that

environments and states refer to implementations. The treatment of boolean

expressions as switches over the flow of control, in the context of

programming languages, can be traced back to 1955 (PP—2 compiler — pp 246 in

[Knu80]). However, with respect to our IDS treatment of arithmetic

expressions, it it possible for the transformation process, to spot the

cases where no order of evaluation is implied by a semantics of [e'oe"] and

introduce tree weighting itself. This, we believe, can be done and must be

done, if one wishes to start with SDS semantics.

- 161 -

----Snapshot 7.9: The Store with Locationsfsnsv
Syntactic C a t e g o r i e s ----------------- ~
c: Com.
e :Exp.
i:Ide.

Original Specification

Syntax
c ; Let i:=e In ĉ | i:=e

Semantic Domains
e:E.
c :C=[S > S].

T=[{ TRUE } + { FALSE }]
1:L.
p:U=[Ide » L].
s:S=[[L > E] x [L > T]].

commands
expressions
identifiers

Semantic Domains of 'Interest'
~ENV=U. “
REG=E.
STA=S.
LOC=L.

Semantic Primitives
Conts:[L > S > E].
Conts=

>ls.(stl)l.

Lose:[L > C].
Lose=

>ls.<stl,>l'.l=l'»FALSE,(st2)l'>.

Extend:[L > C].
Extend=

>ls.<stl,>l'.l=l'»TRUE,(st2)l'>.

NewL:[S > L].
NewL=

>s.l where (st2)l=FALSE.

Update: [L >■ E > C].
Update=

>les.<>l'.l=l'»e,(stl)l',si2>.

Semantic Equations
E :[Exp » U > S > E].
C :[Com » U > C].

C[Let i:=e In c^]p=
E[e]p + >e.{NewL + >1.{Extend 1 ô Update le o

C[i:=e]p=
E[e]p + 3*e.Update(p[i])e.

expression values
state transformations
truth values
locations
environments
machine states

environments
registered values
states
locations

(7.9.1)

CICjKpU/Ii]]) ô Lose 1}}
(7.9.2)

(7.9.3)

- 162 -

Consider now the allocation of locations, in the language of Snapshot 7.9

which can be thought as an extension to Snapshot 7.5. The corresponding CGP,

shown in Snapshot 7.10, works well and generates the expected code. However,

the way that we would implement the primitives: NewL, Ext end and Lose is not

in the form that this SDS specification dictates. The functions NewL and

Extend, which obtain and mark unused locations when necessary, seem to be

abstracting a 'free storage' mechanism which is not the one dictated by a

block structured discipline. The problem is that the location-deallocation

mechanism, where the area function of the state ([L >• T]) indicates which

locations are in use, requires the function Lose to deallocate locations

when required. It would seem reasonable that locations be marked 'in use' in

the environment allowing 'automatic' deallocation of locations at the end of

a block, as environments, and therefore details of storage in usage are as

dynamic as the environment.

Accordingly, we rewrite in IDS the SDS definition. Those parts that differ

from Snapshot 7.9 are shown in Snapshot 7.11. The corresponding CGP fragment

is shown in Snapshot 7.12. The code that both specifications generate is the

same, the main difference is the absence of the primitive Lose, whose

activity now is taken by reset. So, what have we achieved with the IDS

specification? We have shown how a realistic implementation treats the

allocation of locations in a block structured language (level-offset pairs)

by allocating them at compile-time, Also, we have shown that the

State Analysis and Environment Analysis are both capable of transforming the

corresponding semantics.

7.3 Marking locations in use

- 163 -

— — ------__ Snapshot 7.10: The Store with Locations(SDS). BCPT,
let trans.C(node) be switchon type~node into ------------- TT '-in i'S~{ case N3..Let: (7.10.1)

trans.E(p2~node).dest.(first.reg)
{ let 1 = NewL()
Extend(l)
Update(1).dest.(first.reg)
{ let old.env = this.env
declare(domain.of(1), 1 , pl~node)
trans.C(p3~node)
reset(old.env)

}
Lose(l)

}; endcase
(7.10.2)

case N2..Assignment:
trans.E(p2"node).dest.(first.reg)
Update(look.up(prnode)).dest.(first.reg); endcase (7.10.3)

Snapshot 7.11: The Store with Locations(IDS). Original Specification
Modifications to Snapshot 7.9

environments
machine states

Semantic Domains
P :U=[[Ide » L] x [L » T]].
s:S=[L > E].

Semantic Primitives
Extend:[L > U > U].
Extend=

>lp.<P’H,>l'.l=l/»TRUE,(Pt2)l,>.

NewL:[U > L].
NewL=

>p.l where (pt2)l=FALSE.

Update:[L > E » C].
Update=
Xles.^1'.1=1'>e,sl'.

Semantic Equation

C[Let i:=e In c]p=
E[e]p + >e.ui.Up'.(Update le o C^Kp'[l/[i]]))} (Extend lp)}(»ewL p)

(7.11.2)

- 164 -

___________ Snapshot 7.12: The Store with Locations(IDS). BCPL_____________
A Fragment

case N3..Let:
trans.E(p2~node).dest.(first.reg)
{ let old.env = this.env
let 1 = NewL()
Extend(l)
Update(l).dest.(first.reg)
declare(domain.of(1), 1, pl^node)
trans.C(p3~node)
reset(old.env)

}; endcase__ (7.12.2)

7.4 Declaration and Invocation Environment

If we consider the virtual machine behaviour at the different times of

declaration, invocation and execution of a function or procedure, we can

isolate five different objects which are manipulated in a way that

characterises most of the flavour of different programming languages.

Namely, associated with every function or procedure (FP) there is:

(I) Local binding: A function to give values for everything which
is bound within the FP.

(II) External binding: A similar but not equal function to give values
for everything which is free in the FP.

(III) Local workspace: A function to keep track of those locations
defined within the FP

(IV) Return continuation: The function mapping what remains to be done
when the FP terminates.

(V) Current continuation: The function mapping what remains to be done in
the FP.

Some of these are defined at declaration time. For example, part of (I),

(II), part of (III) and (V) are defined at this time in languages with

static binding like ALGOL6O. At invocation time, a copy of what was created

at declaration time is made and some other functions are defined, for

example (IV) and in dynamically bound languages (II). At execution time,

some functions may be updated. For example (I) and (III) may be extended by

- 165 -

— _____ Snapshot 7.13: Environmpnt- (SDS).
Syntactic Domains
e :Exp.
i:Ide.

Original Specification

e ::- i | Let i(ii)=e1 in e2 | 6^ 2)
Syntax
e : := i

Semantic Domains
t:T=[{ TRUE } + { FALSE }].
v: V.
e :E= [V + F].
c :C=[S > S].
k:K=[E > C].
d:D=[L + F].
s:S=[[L > V] x [L > TJ J.
1 :L.
F=[V > K > C].

p :U=[Ide > D].

Semantic Primitives
New:[S > L].
New=
>s.l where (si2)l=FALSE.

NewL:[[L > C] > C].
NewL=

>k:[L > C]s.(kl(Toggle TRUE Is)
Where l=New s).

FreeL:[L » C » C].
FreeL=
>lcs.c(Toggle FALSE Is).

Toggle:[T > L > C].
Toggle=

Hls^stl.H'.l^'^t^sfZ)!^.

Assign:[L > V > C > C].
Assign=

>lvcs.c<>l'.1=1 '»v ,(st1)1 ',st2>.

Load:[L > K > C].
Load=

>lks.k((sil)l)s.

Wrong:C.

Semantic Domains of 'Interest'
ENV=U. ~
REG=[E + L].
STA=So
TEM=F.

expressions
identifiers

truth values
storable values
expression results
command continuations
expression continuations
denotable values
machine states
locations
function values
environments

undefined

environments
registered values
states
templates

- 166 -

_________________________Snapshot 7.13 (continued)__________________________
Semantic Equations
R: [Exp » U > K » C]. (7.13.1)

R[Let i(i.)=e1 In e„]pk=
R[e2]p'*k
Where p'' =
Fix
Op' *P

[>vk'.NewL{>l.Assign lv{R[e](p'[1/[i]]){>e'.FreeL 1{k'e'}}}}/[i]])
(7.13.2)

R[e,(e)]pk=
RIe1fp{>e.e?F>R[e2]p{>e,.e'?V>{e|F}(e/|V)k,Wrong},Wrong}. (7.13.3)

R[i]pk=
{>d.d?L»Load(d|L)k,k{d|F}}(p[i]). (7.13.4)

new declarations. For a full description of this model, see [Bor79].

If we now look at the domain definitions and equations of Snapshot 7.13, we

can see that there is no clear mathematical machinery to abstract our model

at the different times of declaration and invocation. Moreover, there is no

distinction whatsoever between free and bound identifiers. From a (purely)

mathematical point of view, it is not necessary to distinguish between them.

However, from an implementation standpoint, we have to be able to tell

whether a variable has been declared within the current function or

procedure or in an external one, leading to a completely different behaviour

of the look up function. For example it might be necessary to walk down a

link chain in a stack.

Also, the domain of locations is not abstracted at an appropriate level. In

the implementation of block structured languages it is reasonable to

associate variables to 'offsets' within the workspace of a function or

procedure (or perhaps block) at compilation time. Locations are only

- 167 -

allocated at execution time w h o a 'base' Is calculated for all the offsets
of the local variables.

To overcome these problems, we are going to modify the environment so that

it precisely abstracts the model described above. The first four functions

are going to be members of the environment while (V), the current

continuation is still going to be passed as an explicit parameter to the

valuations. F will be Invocation Record Frame and U an Invocation Record, or

in terms of [Bor79] a Mini-Process State Descriptor (mPSD).
1 :L.
b:B.
o:0.
f:F=[M x U x 0 x P].
p:U=[M x U x [B x 0] x K]

I II III IV

block structured locations
bases
offsets
function closures
environments

We now describe the parts of the environment, or mPSD in detail.

7.4.1 (I) Local Binding

The binding map:

m:M-LIde > D]. binding map

is the same as the the original environment domain. It binds identifiers to

their denoted values. The empty binding map is defined to be:
1N1JLU • xj • undefined
Nilm=
>[i].Nild.

- 168 -

7.4.2 (II) External Binding

(Or Environment Link.) This is a reference to the environment of the

textually enclosing procedure, where the denotation of free identifiers can

be found. The function LookUp defined recursively, implies a behaviour which

searches down this chain of environments when the denotation of a free

identifier is required. Bound identifiers are found in the binding map.

LookUp also converts offsets in D to their corresponding locations by

reference to the Base in the local workspace component of U.

LookUp:tide » U > G].
LookUp[i]p=

(>d.d=Nild»LookUp[i](pEXT),d?0»Loc(Nloc<pBAS,d|0» In G,d?F»d|F In G,Tg)
(P [i 1) -

7.4.3 (III) Local Workspace

In a function closure, or declaration record frame, the local workspace is

an offset. It indicates which is the first free offset at declaration time,

whereas in an environment in IDS it is a pair <b, o> indicating where the

workspace starts and ends, respectively: <pBAS, FirstO> and <pBAS, pTOP>. It

would be nice to identify locations with the product of bases and offsets in

the following manner:

However, if we do this we cannot achieve a realistic implementation

semantics. As it stands, identifying L with [B x 0] (assuming B and 0 are

countably infinite domains, so that for any B and 0 that might occur in a

program the corresponding location exists) means we have an infinite number

of locations - which is certainly not required in an implementation

semantics. However, if we restrict B and 0 to being finite domains, we then

imply an arbitrary limit to the number of blocks than can appear in a

- 169 -

program, and an arbitrary number of locations that can be used in each.

Neither of these two possibilities matches up with the standard semantics of
the language.

So wo are forced to postulate that there la a finite number of locations and
a function:

Loc:[N » L]. undefined

which gives a proper location when given an integer in (i| 1 <= i <= n),

Where n is the number of locations, and otherwise indicates an error. Also
we need a function:

Nloc: [IB x 0] >»]. --------------"undefined----------------

to Indirectly find the location corresponding to each [B x 0J. (We do not

»ake NlociUBxOJ > L] as we „ y want to store a <b, o> pair without

assuming that the corresponding location exists.)

As we have already indicated, the existence of <b, o>, for some b and o does

not guarantee the existence of the corresponding location. We therefore need

the function New again, this time with functionality:

New: [[B x 0] » L]. " ----------- ------------- -- --- ------- ------
New<b,o>=
Loc(Nloc<b,o>).

We must of course, insist that the locations are used in ascending numeric

order, with Nloc<FirstB, First0> = 1, and in fact B and 0 could be

identified with N, but we prefer no to do this. Instead we define two

primitive functions to obtain new bases and offsets, which we assume satisfy

the above two conditions:

- 170 -

NewB:[[B x 0] > B].
NextO: [0 0] .

undefined
undefined

and two constants which are the first base and first offset:
FirstB:B. undefined
First0:0. undefined

To increase the size of

operator:

the workspace at invocation time we use the post-fix

p[NextO(pTOP) / TOP] = p'
Where p'=^X.Next0(pT0P) If X=T0P

pX Otherwise

Getting a block structured location and binding it to an identifier is now a

single activity modelled by the primitive functions BindF at declaration

time, and by BindP at invocation time:

BindF:[Ide » M » 0 > [M x 0]].
BindF[i]mo=
<m[o/[i]],NextO o>.

BindP:[Ide > U > Uj.
BindP[i]p=

(>1.l=Tl»Tu,p[Next0(pTOP)/TOP][pTOP/[i]])(New(pLOC)).

7.4.4 (IV) Initial and Return Continuation

The forth element in a function closure (F), is a member of the domain of

function values (P):

P=[U >■ V > C]. function values

It models the meaning of the function which is expecting an environment and

an actual value for its formal parameter. While in an environment (U), it is

a member of the domain of return continuations (C). In relation to [Bor79],

(IV) can be seen as a reference to the current continuation field of the

calling mPSD.

- 171 -

The task of activating a function closure (creating a new invocation
environment), is modelled by:

"Activate: [F » IB x 0] » V » K » Cl.--------- -------- ----------------------—
Activate f<b,o>vk=

{ f t4}<ft1, f t2,<NewB<b,o>,ff3>,k>v.

Assuming contiguity o£ callec and callee_ actlva£lng means ^

cailee's base on top of the workspace of the calier's invocation
environment.

Semantic Ecua^Sj <IDS>- ° ^ n a l Specification
R: [Exp > U > K > Cl.

(7.14.1)
R[Let i(i,)=e1 In e„]pk=
R[e2]p3d 1 2
Where p3=
FixQp'.(^<m,o>.

p[<m,p',o,
>p"v.{>l.Assign lv{R[e1]p"{pRET}}}(New<p"BAS,

P"lij]|0
>/[i]])(BindF[i1]Nilm FirstO)). >‘> (7<u 2)

(e„)]pk=
RlelJP{>e.e?F»R[e2]p{>e'.e'?V»Activate(e|F)(pLOC)(e'|V)k,Wrong},Wrong}

(7.14.3)
R[i]pk=

{>g.g?L>Load(g|L)k,g?F>k(g|F),Wrong}(LookUp[i]p). (7 .1 4.4)

After incorporating the new environment structure and their associated

primitive functions, the IDS definition looks as Snapshot 7.14. The equation

(7.14.2) shows how the binding map (m) is formed from the empty one (Nilm)

with an additional binding of the parameter [ij to the first free offset,

an external binding (p') which is the newly created fixed point environment,

an indication of how many offsets have already been claimed (one in this
case) and finally, the function value in P.

- 172 -

A Posteriori Evaluation: In general, it seems that our transformational

system developed beyond our initial goal. There are many issues, like the

treatment of recursion, which are perfectly transformable from a SDS

specification. Up to the time of their development they were considered not

transformable from other than an IDS specification. As opposed to the

preceding three sections, where we have shown the use of an IDS to generate

a more efficient CGP, the IDS version that we have just developed is not

used any longer in the same way. It represents ideas that we had early in

our research, with respect to the the way that we were going to handle

recursive procedure and functions. The transformations of Chapter 4 show how

our system is quite capable of recognising the crucial moment of entry, exit

and call, without the need of any implementation idea abstracted at the

level of IDS. In this respect, section 7.4 is a blind-alley.

CHAPTER 8

Conclusion

Every BCPL snapshot shown speaks for itself. The two main examples of the

correspondence described are shown in Appendices D and E. They are the final

example language of [Sto77] and GEDANKEN. The structure and operation of the

code generators obtained for all examples shown is in effect very similar to

the one we might have produced by hand. Moreover, the structure of the code

that these programs generate is as efficient as the code a hand coded

program would generate. To our knowledge, today, there are no compiler

generators, directed from a denotational semantics, which achieve this level

of efficiency, nor systems whose output is a program written in a systems
programming language.

Our research has shown that this task is possible. However, we do not claim

a level of generality which allows the transformation of every possible

semantic specification. Our transformation system (and associated

implementation), needs further investigation: an exhaustive analysis which

has been started in order to allow completion of our major examples. A good

step in this direction would be the definition of a canonical form of the

concrete semantics. The problem is that there are many different ways of

representing a function whose only importance is its value (referential

transparency). But if a semantic directed generator depends on the concrete

semantics, then the way that a semantic function is described is important.

P. Mosses's SIS system achieves generality (and correctness) by uniformly

translating into lambda, the cost is the lack of efficiency. If one believes

that GEDANKEN is not general enough, then we failed to achieve generality.

Believing this or not, what we have gained is efficiency at the same level

- 174 -

of a hand coded compiler. The cost of our method is that a non-uniform

translation is not as 'automatically' correct, as one which faithfully

implements the conversions of the lambda calculus.

We have mainly concentrated on the final part of a compiler because this

area relates directly to a semantic specification. A syntactic

specification, of course, relates to the initial part. The middle area,

compile-time type checking, has only been partially considered:

If CHA is the representation of the source program as a character string,

SYM the internal representation as a sequence of symbols, TRE the internal

representation of programs in the form of a tree and COD the final outcome

of a compiler, then today, we are equipped with the following systems which

generate programs written in BCPL:

PROGRAM | FUNCTION | UNDERLYING THEORY | SOLVED BY | REFERENCE

scanner | [CHA > SYM] | Finite state machine | LEXGEN | [Suf78a]
parser | [SYM > TRE] | Push down automata | LL1 | [Suf78b]
translator | [TRE » COD] | Denotational Semantics | ISL | this thesis

And we still require:
checker | [TRE » TRE] | Denotational Semantics | not done I

It is now imperative to prove that our transformations are correct and

preserve meaning. A first attempt to prove this was to regard the generated

program as an operational definition and then to relate it to the original

specification proving the congruence of the definitions. The problems with

this method are, firstly, that it is very difficult, because the domains are

very dissimilar. Secondly, this proof has to be restated for each new

language.

- 175 -

An alternative approach would be to formalise the semantics of the

metalanguage in which the transformations themselves are expressed and then

relate the WFFg to the WFFt through them. This method is attractive not only

because of the possibilities of proving the correctness of our system in a

general and language independent way, but also because, having formalised

the transformations, one could design an automaton, to perform their action.

As M. Henson suggested, this would be a compiler-compiler-compiler (3

times). At present, we have implemented (after several years of programming

effort) our ISL system (briefly described in Appendix A), which consists of

a collection of BCPL modules, which perform the different levels of

transformation, rather like a collection of experts, each one relating to a

particular denotational feature (a domain of interest) and to a particular

implementation technique (of our choice),

An interesting open question is the possibility of extracting, from the DS

specification, information about the kind of 'virtual machine' that a

particular language might require. At present, we recognise only the

location where for example, the CGP must plant code for procedure entry and

exit. Our translator generates statements of the form trans.entry(P) and

trans.exit(P), but it is unable to predict the sort of code that these

procedures should plant, i.e: should the first one get space for an

activation record from a stack or from a heap?

Another interesting open question, is the relationship between the

translator, as described above and: interpreter:[TRE » MEANING]. Our

transformation system has been oriented to produce code generators; a

similar system, using similar techniques could be written to produce an

- 176 -

interpreter.

We have developed a system to generate code generators for a class of

programming languages, with a target code as general as can be expressed

within the constraints of the generated primitives. We could actually fix

the programming language, and generalise the target machines for a wider

class of hardware configurations, say for mini-computers. This might prove

to be very useful when considering that today, hardware developments change

faster than software developments.

Finally, recall the problem of generating a parser from a BNF specification

as an analogy to the problem of generating a code generator, as presented in

Chapter 1. Suppose that one wishes to generate or hand write a top down

analyser, with one symbol of lookahead and no backtracking. This means that

the original BNF specification, has to be rewritten to fulfil the one-track

condition [Bor79]. What we have done, is to design and implement an

automatic system, analog to an LL1 parser generator, which also expects the

specification written in a particular form. The problem is that we do not

know, for certain, which are the conditions that the denotational

specification has to fulfil. In this sense, we believe that our research is

a step towards the definition of such conditions.

* * *

References

AaU72

ADA80

B jo77

Bor79

Bro60

Bro62

Bro63

Cur58

Gan80

Gau81

Gri71

Hen82

Ing61

Iro61

Jon80

AaU69 ^ ’V^ h° Aand J*D*Ulimal1* Syntax Directed Translations and the
Pushdown Assembler, pp 37-56 in J.Computer and Systems Sciences 3-1,

A.V.Aho and J.D.Ullman. The Theory of Parsing, Translation, and
Compiling. Prentince-Hall, 1972.

vers ion.'^INRIA^igSO?' ^ ^ ^^uage. Preliminary

D.Bjorner. Programming languages: Formal development of interpreters
EnM n r W Pilri?D'kk ±n Internati-°nal Computing Symposium, edE.Morlet and D.Ribbens, North-Holland, Amsterdam, 1977.

R.Bornat. Understanding and Writing Compilers. Macmillan. 1979

R.A.Brooker and D.Morris. An Assembly Program for a Phrase Structure
Harr°8ate Conference of the British Computer Society,

i960. also in the Computer Journal 3-3

R.A.Brooker and D.Morris. A General Translation Program for Phrase
Structure Languages. JACM 9, 1962.

R.A.Brooker. The Compiler-Compiler. Annual Review pp 229-275 in
Automatic Programming, 3. Pergamon, Elmsford, N.Y. 1963.

J.B.Curry and R.Feys. Combinatory Logic, Volume I. North-Holland,
Amsterdam, 1958. ’

H.Ganzinger. Transforming Denotational Semantics into Practical
Attribute Grammars. pp 1-69 in Semantic Directed Compiler
Generation, ed N.D.Jones, Lecture Notes in Computer Science 94.
Sprmger-Verlag, Berlin, 1980.

M.C.Gaudel. Compiler generation from formal definition of
programming languages: a survey, pp 96-114 in Formalization of
Programming Concepts, Intl. Colloquium, Peniscola, Spain. Lecture
Notes in Computer Science 107. Springer-Verlag, Berlin,1981.

D.Gries. Compiler Construction For Digital Computers. Wiley
International Edition, 1971. y

M.Henson and R.Turner. Completion Semantics and Interpreter
Generation, ACM Principles of Programming Languages, 1982

P.Z.Ingerman. Thunks. pp 55-58 in CACM 4-1, 1961.

E.T.Irons. A Syntax Directed Compiler for ALGOL6O. pp 51-55 in CACM
4—1, 1961.

N.D.Jones and D.A.Schimdt. Compiler Generation from Denotational
Semantics, pp 70-93 in Semantic Directed Compiler Generation, ed
N.D.Jones, Lecture Notes in Computer Science 94. Springer-Verlag,
Berlin,1980. y

- 178 -

Knu80

Lan65

Lew68

Lew79

MaS 7 6

McC60

Mos74

Mos75

Mos76

Mos78

Mos79

Pau81

Ple82

Ran75

Knu68 D.E.Knuth. Semantics of Context-Free Languages, pp 127-146 in Math.
Systems Theory J. 2-2, 1968.

D.E.Knuth and L.Trabb Pardo. The Early Development of Programming
Languages. pp 197-273 in A History of Computing in the Twentieth
Century. Academic Press, 1980

P.J.Landin. A Correspondence Between ALGOL6O and Church's Lambda-
Notation. pp 89-101,158-165 in CACM 8, 1965.

P.M.Lewis and R.E.Sterns. Syntax-Directed Transduction, pp 464-488
in JACM 15-3, 1968.

J.Lewi, K. De Vlaminck, J.Huens and M.Huybrechts. A Programming
Methodology in Compiler Construction. North-Holland, Amsterdam,
1979.

R.E.Milne and C.Strachey. A Theory of Programming Language
Semantics. Chapman and Hall, London 1976.

J.McCarthy. Programs with Common Sense. Proceedings of the Symposium
on the Mechanization of Thought Processes. National Physiology
Laboratory, Teddington, England, 1960.

P.D.Mosses. The Mathematical Semantics of ALGOL6O; Technical
Monograph PRG-12, Programming Research Group, University of Oxford,
1974.

P.D.Mosses. Mathematical Semantics and Compiler Generation. PhD.
thesis. University of Oxford, 1975.

P.D.Mosses. Compiler Generation using Denotational Semantics.
Mathematical Foundations of Computer Science. Lecture Notes in
Computer Science 45. Springer-Verlag, 1976.

P.D.Mosses. SIS: A Compiler Generator System using Denotational
Semantics. Reference Manual, University of Aarhus, 1978.

P.D.Mosses. SIS - Semantic Implementation System. Reference Manual
and User Guide. DAIMI MD-30, Computer Science Department, Aarhus
University, Aarhus, Denmark, 1979.

L.Paulson. A Semantic Directed Compiler Generator. ACM Principles of
Programming Languages, 1982.

J.M.Bodwin, L.Bradley, K.Kanda, D.Litle and U.F.Pleban. Experience
with an Experimental Compiler Generator Based on Denotational
Semantics, pp 216-229 in Proceedings of the ACM-SIGPLAN'82 Symposium
on Compiler Construction. 1982.

System Structure for Software Fault Tolerance. IEEE Transactions on
Software Engineering, SE-1. 1975

- 179 -

Ras79

Ras80

Ras81

Ras82

Rey70

Rey72

Rey74

Ric79

Sco70

Set82

Sim68

Sto76

Sto77

Str66

Str73

s ; » » “ S l l L a t „ t a \ 1 U„ T L p u C“ ^ ir T h e &o“ : a;,175 .a‘’<1De“ tatl<>,'al

Generation oh m n t Semantic Directed Compiler
Springer-Verlag, teriin”l 9 8 0 . “°t<!S Com',uter Science 94.

s i « ^ r kys e „ S r afe« a T al- C0mp11" fr°m a Rotational
Infonnatique at an Automation, “ 1“ “ ' “atl°nal de leclercl‘ e"

" 3 0^ Coda
Symposium on Compiler C o n s t r u c t i o n ^ m ^ 5 ^ the ACM-SIGPLA"'82

S r i ; f T f " A S1"Ple Tyi,lsss language Based on the
CACM 13-5, £ 7 ()C°1,let«“ « the Reference Concept, pp 308-319 in

Semantics^dSpp V * 6 I^Toc,T^ ̂ a"d Continuation
Automata, , « es and

Compiler ̂ Cambridge *Unlversity ̂ r e s s , ! S the ''“ S'’* 8'8 “ S

Monograph °l.a Mathe» » “ “ 1 T»eory of Computation. Technical
, 9 7 0 PRG 2' Programming Research Group, University of Oxford,

245-260* ,„C° T 01 L10" of Semantic Directed Compiling. „pZ4o zoO in Proceedings of the ACM— STPPT a m'qo c •Construction. 1982. SIGPLAN 82 Symposium on Compiler

£ £ £ £ : S ^ o m p „ 1 i ^ K- K d ; ?j“ la 67 —

Theoretical'computerCScience°fVol°l3-2^19 8 1 language Definitions.

P r o g r a mmi n g ^ L a n g u a g ^ T h e o r y ^ T h e ^ l T £ . “

C. Strachey. Towards a Formal Semantics, pp 198-220 in Fnrmal
. s s , ,

s S - ' S ’ - -

- 180 -

Suf 77

Suf78a

Suf78b

Ten76

Wij75

B.Sufrin. FORM: A Text Editor. Department of Computing Science,
Essex University, 1977.

B.Sufrin. LEXGEN: A Lexical Analyser Generator. Department of
Computing Science, Essex University, 1978.

B.Sufrin. LL1: A Parser Generator. Department of Computing Science,
Essex University, 1978.

R.D.Tennent. The Denotational Semantics of Programming Languages, pp
437-453 in CACM 19-8, 1976

A.van Wijngaarden et al. Revised Report on the Algorithmic Language
ALG0L68, pp 1-236 in Acta Informatica 5, 1975.

appendix a

The Implementation

We briefly describe the implementation of , system named ISL (Implementation

Semantic Language,, which is the result of the programming efforts during

our research. This major software project was thought, in the beginning, to

be the basis of our contribution. Such tremendous programming effort became

an anonymous contribution in the light of the developments that were to

come, All transformations described have been automatically carried out by

ISL, all final CGPs have been successfully compiled In BCPL, loaded with the

machine interface provided by the ISL library and tested accordingly.

A.l Early History

The ideas for a system which could serve the purpose of aiding in the

construction of the code generation phase of a compiler, originated in the

apring of 1977. Two main projects were developed: An interpreter for a toy

language, with an ALG0L60 level of difficulty and the denotation,! semantics

for the same language, whose original semantic description was informally
described in English.

It was understood at the time, and still remains the corner stone of the

research, that denotational semantics has abstracted, at a„ appropriate

behaviour of a program, and both, semantic description and

implementation, were addressing the same Issue at different levels of

abstraction. When both projects were completed we had:

LEX scanner
SYN parser
DS interpreter

- 182 -

The left hand side, above, consists of language descriptions with different

underlying theories. The second column consists of programs written in BCPL.

At Essex, there are two systems to aid in the construction of these

programs: One, a lexical analyser generator LEXGEN [Suf78a], the other a

parser generator LL1 [Suf78b]. Both systems generate BCPL programs. While

staring at the semantic description and at the interpreter, hand written in

BCPL, we could picture a way to go from one into the other, a parallel was

immediately drawn; what was required was the missing generator.

A.2 Pilot Project

This thesis grew out of this idea. A main design decision was taken at an

early stage. We were going to address the problem of automatically

generating a code generator, as opposed to an interpreter; firstly, because

it was thought to be harder and secondly, because we envisaged efficiency in

the target code.

The implementation of ISL began in 1979. The original idea was to produce a

system to transform 'simple programming language specifications' into BCPL

programs constituting the code generation phase of a compiler for the given

language. But, however 'simple' the languages, this was considered a major

undertaking and we needed some experimenting in order to get experience in

the problems to come. Therefore the first pilot project was to take the

early denotational description and hand write, a stepwise transformation

into a compiler that we also quickly hand coded as target. This project was

immediately followed by a language oriented automatic transformation, which

gave the necessary insight into the problems to come. Even though the system

- 183 -

was oriented to transform only one language, an internal representation of

the source semantic specification was required, We needed a parser and a

type checker for the semantic metalanguage. The latter was not only required

as an aid in writing semantic descriptions; it was already understood at

that time that such information would be paramount in the transformations to

follow. One can understand why P. Mosses first SIS system did not have type

checking, because his transformations do not address the semantic objects

described, only the three main syntactic constructions of the lambda

calculus. But we wished to recognise semantic objects like environments and

continuations; hence, type checking was a main requirement for subsequent

use in the transformation process.

A.3 The ISL System

At that time (fall of 1979), we had such a large program in BCPL, that an

overlay system was immediately designed, and subsequently, we rewrote and

partitioned the early system in different modules:

ISLINI - Initialisation.

Any language processor has some common activity at initialisation time such

as: opening files for input, output and listing, predefine names and

initialise stack. The ISL system requires it and also all compilers

generated with the aid of LEXGEN, LL1 and ISL. This module constitutes

precisely this process. To aid in the initialisation parts of the generated

compilers, an auxiliary library named PROLIB was implemented out of its

code. PROLIB provides the front-end process to any language processor and

has been used for several years by the author and his students.

- 184 -

1SLPAR - The parser.

Generated with LEXGEN and LL1. The input language was not fixed for a long

time, so these automatic aids proved to be invaluable. A description of the

concrete syntax is included at the end of this section.

ISLDES - Description phase.

A semantic description consists of a set of mutually recursive equations and

definitions whose order is irrelevant. Hence, a complete separate pass over

the internal tree representation was designed to fix forward references.

ISLEXP - Type checking expressions.

Because of the complex functionality definitions, this module proved to have

a level of difficulty equivalent to an ALGOL68 type checker. It took more

than 6 man-months to develop.

ISLDDT - Interactive debugging.

Invaluable aid which can be interleaved between any other module, allowing

the scrutiny of every piece of information in the internal tree

representation and interfaces to DEC-10-DDT for machine code debugging.

ISLOUT - Pretty printing.

Used in combination with the text editor FORM [Suf77J to produce all

snapshots of this thesis.

At this stage we were able to construct a well formed internal

representation of a semantic specification, which closely followed the

- 185 -

theoretical ideas of the Advice Taker: a property list for any expression

about which information is known that does not follow from its structure
[McC60],

The next stage, was to perform the transformations. This was done by

recursively walking and transforming in core the internal tree

representation. One different module was written for every different

activity. So the system became a collection of 'experts' which performed the

different levels of transformations. Each module constituted an active

filter, a tree to tree translator. In between each module, ISLOUT or ISLDDT

could be called to perform intermediate listings or debugging. The final

version consists of the following modules:

ISLTR1 - Normalisation
ISLTR2 — State Analysis
1SLTR3 - Syntactic Transformations
ISLTR4 - Splitting Continuations
ISLTR5 - Destination Analysis
ISLTR6 - Continuation Analysis
ISLTR7 - Environment Analysis
ISLTR8 - Optimising Continuations
1SLTR9 - Optimising Transformations
ISLTRA - BCPL

As it can be seen, they correspond to each stage described in Chapters 3 to

6. They are processed in strict sequence and because of the pragmatics of

their activity, the order can not be altered.

Being an overlayed system, there is no theoretical limit in the number of

'experts' that we could add or interleave. If in the future, we wish to

include a different denotational feature, or a different implementation

technique, then it is as simple as adding another module. The size of each

module is, in general, a couple of pages of BCPL code. They are short

- 186 -

because of the existence of a library ISLLIB which contains common code to

all modules.

All the ISL system consists of 10.700 lines of pure (comments are not

counted) BCPL code.

- 187 -

A.4 Concrete Syntax of WFFs
Comment
EndOfLine
Nume ral
Quotation
CurlyName
DomainName
DomainToken
SyntacticName
SemanticName
SyntacticToken
SemanticToken
SynlnsideSem
Isl
Syn
Sem
End
S
IslSpe
IslBod
SemSpe
SynSpe
GetSpe
SynDef
SynNamDom
SynNamPro
SynAlt
Syntax
SemDef
SemDefNam :

SemUnd
SemDefSel
SemDom
SemPriEqu
SemDefNamEqu
SemDomFun
SemNulEqu
SemDefNamCol
SemNamFun
SemDefNamColNam
SemNamDom
SemNamDomFun
SemDef Cur
SemCurUnd
SemCurFun
SemCurEqu
LamLs t
LamBas
LamTok
DomExp
DomExl

COMMEN
EOL
NUMERAL
QUOTATION
CURNAM
SEMNAM
SEMNAM
SYNNAM
SEMNAM
SYNNAM
SEMNAM

SEMLST

QUOTATION | TERMINAL
SEMLST | CURNAM | SynlnsideSem

SemSpe | GetSpe]*

SynNamPro]

SYNVAR |
SEMVAR |

* "[I" Syntax "|j"
= "Isl_eol_comment"
: "Syn_eol_comment"

"Sem_eol comment"
"End_eol_comment"
IslSpe
Isl IslBod End
[IslSpe | SynSpe
Sem SemDef*
Syn SynDef*
"Get" Quotation IslBod
SyntacticName [SynNamDom
: DomainName . Comment

SynAlt
Syntax [|" EndOfLine? Syntax]*
SyntacticToken SyntacticToken*
SemanticName SemDefNam | CurlyName SemDefCur
s“ Na»ColDefS<!l ' Se"D0" ' ' SemDefNamEqu
"?" . Comment
==" SemLam . Comment
. Comment
LamLst = SemEqu . Comment
= [SemDomFun | SemNulEqu]
DomBra . Comment
SemEqu . Comment
: [SemNamFun | SemDefNamColNam]
DomBra . Comment
SemanticName [SemNamDom | SemNamDomFun 1
. Comment
= DomBas . Comment
SemCurUnd | SemCurFun | SemCurEqu
"?" . Comment
: DomBas . Comment
LamLst? = SemEqu . Comment
LamBas LamBas*
LamTok | < [LamTok [, [LamTok | 1 i* l? >
SemanticToken [: DomBas]?
DomExl ["->" DomExl]*
DomEx2 [+ DomEx2]*

- 188 -

DomEx2
DomEx3
DomBas
DoraBra
SemEqu
SemExp
SemEOO
SemEOl
SemE02
SemE03
SemE04
SemE05
SemE06
SemE07
SemE08
SemE09
SemElO
SemEl1

SemLam
SemPostAss
SemTup
OprPrim
OprCond
Oprlnte
OprDoraa
OprDyad
OprRela
OprList
OprMona

Concrete symbol
[I

I

Lam

->

DomEx3 [. DomEx3]*
{ SemanticName } | DomBas
DomainToken | DomBra
"[" DomExp "]" "*"?
SemExp
SemEOO ["Where" LamLst = SemExp]?
SemEOl [OprPrim SemEOl]*
SemE02 | SemLam
SemE03 [OprCond SemExp , SemEOl]?
SemE04 [Oprlnte DomBas]*
SemE05 [OprDoma DomBas]*
SemE06 [OprDyad SemE06]*
SemE07 [OprRela SemE07]?
SemE08 [OprList SemE08]*
OprMona? SemE09
SemEl1 [SemElO ?]*
SemEl1 | SemPostAss
(SemExp) | { SemExp } | Numeral | SemanticToken
Quotation | SemTup
"Lam" LamLst . [SemEOl | SemEOl]
"[" SemExp / SemExp "]"
< [SemExp [, [SemExp |]]*]? >
; | * | @ | "=>" t'_yi
1)911 | 119911

"I" | "In"
+ I -
= | "Eq" | "Ne" | "Ls" | "Le"
! | - | %

"Gr" | "Ge"

Snapshot form
[

]

+

ir

Comment
Open Syntax

Close Syntax

Lambda

Composition with side effects

Composition without side effects

Composition

Conditional and Function Constructor

Cross product

Chop

Select

SEL==>i.e iSEL==e Selector

APPENDIX B

Transformation Rules

Rules marked with a * next to their number, are those redefined or extended.

B.l Normalisation

v[s1]p=e1.
• • •

v tslp=e . nJ r n

>ip.e

=>

e^ Where p=e1
Cond<ei, e2>eQ

Scond<e1, e2>eQ

=>

=>

=>

=>

if n>l
let v node p be
switchon type^node into
{ case [s ^ : ê ; endcase

}
case [snJ: en; endcase

if n=l
_ let v node p be ê

^i.^p.e

{ let p=ei ; eQ }

e0?T > êo |T * ei> e2 >̂ Wrong

e0??T > (eQ|T > e^, e2),Wrong

[r i.i:

[R1.2]

[R1.3]

[R1.4]

[R1.5]

B.2 State Analysis

when i:STA Xi.i => {}
when i:STA Xi.e => e

when i:STA fD O H
* => eo

when e:STA eoe => { e In COD;
when i:STA e>e1.i =>

when i:STA i, e j => e>{},e1

when i:STA Strict(^i.e) => H.e

Is => {}

when eQ:[STA>D] eQ o e => C
where C = { e ; e } if D =STA or D =ANS (i.e: en :COD)

C = e^(eQ otherwise

[R2.1]

[R2.2]

[R2.3]

[R2.4]

[R2.5]

[R2.6]

[R2.7]

[R2.8]

[R2.9]

- 190 -

when for any eo - eidomain D and e^
=> (e In [D>D])(e In D)
:[STA>D] and ex: [D^STA^]]

[R2.10]

when for any
e * e 0 — 1 domains D, and

=>
°3 e0:

(e In [D >D])o(e In [D>D3])
[D^tDxSTAJ] and ej:[D»[STA?D3]]

[R2.ll]

when i: STA i[e1/e2] => trans.update(e^, ê) [R2.12]

when i: STA i(e) => trans.load(D0M(e), e) In REG [R2.13]

when i: STA <eQ» i> => eo [R2.14]

when e^:STA <eo* ei> => { eQ ; ei } [R2.15]

B.3 Syntactic Transformations

let vi,...i be C 1 n => let vCij,..., in) be C

eAe....e 0 1 n => e0(ei» en)
Q i . e X e p => { let i=e^; e }

(>i.e)(e1)(e2) => { let i=e^; e(e2> }

when not i:C0D (^i.e){C; e^} => C; { let i=e^; e }

Strict(e) => e
when e:TEM and there is no e ̂ such that Non-Strict(e2):TEM

case
[s, . sn]:

eelor
()t 1 * • • • el • • •) e1

=>

=>

case [s^ ... sn]:
{ let n = open.node(node)

[R3.1]

[R3.2]

[R3.3]

[R3.4]

[R3.5]

[R3.6]*

[R3.7]
freevec(n)

} rename [s]=>n!inx, [s]=>n!!n,
n=?node.vec

e(Thunk(e^))
or [R3.8]

e(^ i. ... ei ...)(Thunk(e^))
where e.f. i __ __
when e:TEM and there is an such that Non-Strict(e2):TEM

- 191 -

B.4 Splitting Continuations

when eQ:KON e0(el>

eQ^^ ^ *e j)when (>i.e):KON

let v(D, i) be C
when i:KON=[d>COD]

when i:KON=[d>COD] e(P, i)~

when i:COD let v(D, i) be C

when e^rCOD e0(p» ej)

=>

=>

=>

=>

=>

=>

when eQ:KON eQ(P, >i. ...e)

ê ; eQ In COD

eQ(P) .cont. (e^ .dest. (i)
_i is bound in ê

let v(D).cont.(i In COD)
.dest.(? In d)

be C

e(P).cont.(i In COD)
.dest.(? In d)

let v(D).cont.(i) be C

eQ(P) .cont. (ep

for inx=l to Inode.vec-1
=> I do eQ(P).cont.(...).des t.(i)

__I I__unless Inode.vec=0 do e

[R4.1]

[R4.2]

[R4.3]

[R4.4]

[R4.5]

[R4.6]

[R4.7]

B.5 Destination Analysis

let be C I => | let v(D).dest.(reg) In COD [R5.ll
when v(D) :REG _I I be C

let v(D) be C => let v(D) be [first.reg/reg]C [R5.2]
when not v(D):REG

, , s e^p) => e(P).dest.(reg) In COD [R5.31*
when (e(P):REG or e(P):THU) and not e:ENV

{ let i=e(P); C } => { e(P).dest.(i) In COD; C } [R5.41*
when (e(P):REG or e(P):THU) and not e:ENV, rename i=>(i=ak)>reg+k, reg

1 1 el
e2^P0’ el ’ ̂ ̂ pi) [R5 51when ex= e(P)A.dest.(E) _| |_ 2 0 1 1 J

e(p> i) I => I e(P).dest.(i) In COD [R5.61when i:REG and P not null I I

- 192 -

{CQ; e; }
or

e0 » e’ e2 or
e0 » el> ewhen NeedsLoad

where NeedsLoad = e:REG and not e:COD and

=> I {c0; c; C1or
=> 1 eQ > c, e21 or
=> 1 en > e, c

I where C =
e:COD and
i:ENV) or e- V - 0

when efi and (e:TEM or e:THU)

when e:TEM and i:REG e
where e == Xi.e^

when e:TEM or e:THU e

when e:TEM e(P)

=> [first.reg/reg]e

=> [first.par/i]e^ In DOM(e)

=> trans.load(DOM(e), e) In REG

=> e(P).dest.(first.reg)

let v(D).cont.(P).dest.(?:d) | | let v(D).cont.(P).dest.(reg)
be C | => | be C

when dCREG | |

e.cont.(P).dest.(?:d)
when dCREG

e.cont.(P).dest.(i)
when i:REG

e.cont.(P).dest.(?:d)
when e:TEM and dCREG

for 1=1 to Eq do Cj
unless E^ do

=> e.cont.(P).dest.(reg)

=> | e.cont.(P).dest.(i)
I__rename i=>(i=ak)>reg+k, reg

e.cont.(P).dest.(first.reg)=>

{ let old.env = this.env
let old.off = this.off
for 1=1 to Eq do C4
unless E do C,.
reset(ola.env)

}
when C = e (P).cont.(...).dest.(I)

c2= { c7> e2(P2).cont.(C3).de4t.(I2); Cg }
C e ^ (<1.,...,I„>)

where C,= e (P.).cont.(trans.dump(I.); ...).dest.(I.)
CK= { C7; e9(P9).cont.(Cfc).dest.(I2); Cg }
C^= e (old.offdest.(I ̂
any C^, Cg

| { let dmp.loc = trans.dump(I
for 1=1 to E do C. | => |
C„ l i e

1 1 }

for 1=1 to E do C„ 1

when C = e (P I P)A
I :REG and any C

where C^= { C^; trans.Ioad(DOM(ip, dmp.loc).dest.(I) }

[R5.7] *

e) In REG

or e=q)

[R5.8] *

[R5.9]

[R5.10]*

[R5.ll]

[R5.12]

[R5.13]

[R5.14]

[R5.15]

[R5.16]

)
[R5.17]

- 193 -

when i-REG ̂ ^ Dl) ^ ° ! => ‘ ^ V(V i» V be C tR5’18^en l.REG __I |_rename i=>reg

when e -RKr « .R^ 0OeJ, => ^ns.skip.if (i.skiPXX,eQ,e) [R5.19]v! e0*REG and ej.REG ana o is one of: =, Eq, Ne, Ls, Le, Gr, Ge
where XX is respectively one of: EQ, EQ, NE, LT, LE, GT, GE

I I StrictQi.
I I { trans.call(i).dest.(first.reg)

Strict(e) | => | [first.reg/i]e [R5.201
where e = >i.e I I })
when e:TEM and there is an e2 such that Non-Strict(e2):TEM

. . . I I { trans.call(e).dest.(first.reg)
when l)'deS,:‘<I) | - > j [^^.reg/ilej [R5.21J

B.6 Continuation Analysis

{CQ; i; Cj }
or

when i:COD '0 > i, e
or

e0 * el»

=>

=>

=>

’{C0; C; C1 >or
eQ > C, e2

or
en * ei» c
where C = trans.jump.to(i)

e0 > e,, e„ => c
when (EOIsDes or EOIside or EOIsSkp) and i::
where C

C
REG

[R6.1 j

[R6.2]*

CQ }{ C1; C2; C3; Ĉ ; C5; C&; C7; Cg; ^
NoEndCo > null, let econd.code = forward(COD)
NoFalse > null, let fcond.code = forward(COD)
EOIside > null,
Reverse and EOIsInt > trans.skip.if.not.in(P),
Reverse and EOIsDya > trans.skip.if(ReveDya(I), P),

= E8lsSkp > trans.jump.to(FalseCo), JumpRut(i, FalseCo)
= Reverse > null, ê
= NoEndCo > null, trans.jump.to(econd.code)
= NoFalse > null, fix.here(fcond.code)
= E2IsJmp > null, e
= NoEndCo > null, fix.here(econd.code)

(DAEcllsDes =
EOIside =

e^=e(P).dest
60—EOIsInt = e^=trans.skip.if.in(P)

EOIsDya = e =trans.skip.if(I, p)
EOIsSkp = EOIsInt or EOIsDya
EllsJmp = e^trans. jump.to(ip
E2IsJmp = e =trans.jump.to(i„)
E2IsNul = e2={} 1

Reverse = E2IsNul and EllsJmp
NoFalse = Reverse or E2IsJmp
NoEndCo = E2IsNul or E2IsJmp or WillJump(e^)
JumpRut = Reverse > trans.jump.if.true, trans.jump.if.false
FalseCo = Reverse > i., E2IsJmp > i„, fcond.code
HasCont(e)=TRUE if e contains continuations which will jump
HasCont(e)=FALSE otherwise

when i:COD Fix(>i.e) | => | { let i = here(COD); e } [R6.3]
 | | rename i=>restart.code

| | { let ntry.code = forward(DOM(e^))
| | let exit.code = forward(COD)
1 | let skip.code = forward(COD)
| | trans.jump.to(skip.code)
| | trans.entry(ntry.code, node)

when e.:TEM e(po> ei» pp A I => I [R6.4]
| | trans.exit(exit.code, node)
| | fix.here(skip.code)
| | e(p0» ntry.code, P ^ A

when i:TEM Fix(>i.e) => [ntry.code/i]e [R6.5]

when e:TEM e(P)A => trans.call(e, P)A [R6.6]

when i:REG i?d => trans.skip.if.in(i, d) [R6.7]

e => check.if.in(i, d) [R6.8]
when (e = i?d and not i:REG) or e = i??d

I | { let continue = forward(COD)
I | e(P).cont.(continue)A

when e^fi e(P) .cont. (e^A | => | f ix.here(continue) [R6.9]

let v(D).cont.(i)A be C I => I let v(D).cont.(i)A be C [R6.10]
 I | rename i=>continue

I | { let ntry.code = forward(DOM(e^))
I | let exit.code = forward(COD)
I | let skip.code = forward(COD)

e(Pg, >i.e., Pj)A | => | trans.jump.to(skip.code) [R6.ll]
when i:COD and \i.e^:TEM | | trans.entry(ntry.code, node)

I | [exit.code/i]e.
| | trans.exit(exit.code, node)
I | fix.here(skip.code)
I I e(PQ, ntry.code, P ^ A

- 195 -

6(P0’ e0([el/e2]’ P1)A
when : TEM or e^THU

=> e^PQ, eQ([ntry.code/e], P)A [R6.12;
where except for the last statement

I__ e 3 is the same as R6 .ll or R6.21
<e ,...,e > =>

where = let c = E
C2 = for inx=l to s- 1 do C
C3 = unless s=0 do C
C4 = freevec(c) u
e^:D for i=l to n

V 1

C =|
U

{ e ; fix.with(c!inx,r) } if DCTEM
{ fix.here(c!inx); e } if DjXOD
clinx := e^ otherwise

{ e^; fix.with(c!s,r) } if DCTEM
{ fix.here(c!s); en } if DCCOD
c !s := en otherwiserename s=>!node.vec

c=>DCjCOD+TEM]>code.vec, cons.vec
E=>DC[COD+TEM]>forward.vec(s, D), newvec(s)
r=destination of e.

[R6.13;

when e9(-PS'.eiaoA)A ' C,: C'-’e^:D* and not [R6.14]

Where result2of rI 13^ ° 4 ^ inherited from the transformation of ̂ as aresult of R6.13
C 5 = e0 ^P0 ’ cons*vec, P^)A

80^P0’ el’ PP A

when
where
rename

e^COD*

=>

{ C
let s = forward(COD)
trans.jump.to(s)
C2’ C3 fxx.here(s)
e0 (po> code.vec, P ^ A
C4

C^, C„, Ĉ and C^ same as R6.14
s=>sRip.code

Fix(̂ <i,,..., i]>•{ Cn; e. }) { C * C * C ' P * P * P 11- 1 : n 0 1 1]’ n> S > ''cl (when e^COD* and e =<e{,...,e > 1 0 2 3 5’ 4
where C,- = e(PQ> code.vec, P^)X

Cj, C2, C3 and C^ same as R6.14
i^=>code.vec!inx, in=>code.vec!!irename node.vec

c ; ewhen e: COD* nî e or eim =>
where C = null if n=l

C = trans.jump.to(code.vecln) otherwise

[R6.15;

[R6.16J

[R6.17]

e(P).cont.(...)A

when e ̂ :THU e(Pr e:» PX)A

=>

=>

{ let continue = forward(COD)
e(P).cont.(continue)A
fix.here(continue)

}

[R6.18;

{ let ntry.code = forward(DOM(e))
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.thunk.entry(ntry.code, node)
e2 [R6.19]
trans.thunk.exit(exit.code, node)
fix.here(skip.code)
e(P , ntry.code, P.)A

} where e0 =e0 if e ^ T h u n k ^)e2-e3
e2-el otherwise

when

where

Strict(C)
C:TEM and C = { C,; Cn

=> < C, C, }
}

[R6.20]

Ĉ == trans.call(P).^est?(first.reg)
*"2— an^

let ntry.code = forward(DOM(first.reg))
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.thunk.entry(ntry.code, node)
trans.load(DOM(first.reg), first.reg).dest.(first.reg)
trans.thunk.exit(exit.code, node)
fix.here(skip.code)

C3=

V {ntry.code/first.reg}C2

e(P , >i.e1* P1)A

when ^i.e^rTHU

=>

{ let ntry.code = forward(DOM(e^))
let exit.code = forward(COD)
let skip.code = forward(COD)
trans.jump.to(skip.code)
trans.thunk.ent ry(nt ry.code, node)
[exit.code/ije. [R6.21]
trans.thunk.exit(exit.code, node)
fix.here(skip.code)

}
e(PQ, ntry.code, P^)A

- 197 -

B.7 Environment Analysis

80^P0’ e> Pp A
when e:ENV and e+i
when i:ENV

=>

{ let old.env=this.env
e

}
cr o; ,1'* xreset(old.env)

when i:ENV

when i:ENV

i([e1/e2])

{ let i = e
C

}

i(P)A

when i:ENV let v(PQ, i, p ^ a

when i:ENV e(P0, i, Pp A

when i:ENV i(p)
where P - [e ^] ,..., [e^e J * -

cl= f°r inx=l to s-1 do declare(e„, e,)
C2= unless s=0 do declare(e,, e-)

rename s=>!node.vec

=>

=>

=>

=>

=>

declare(DOM(ei), ^ , e2)

{ let old.env = this.env
e
C
reset(old.env)

look.up(P)A

let v(P(), PX)A

e(PQ, Pj)A

I Cj; C2)

[R7.1]

[R7.2J

[R7.3]

[R7.4]

[R7.5]

[R7.6]

[R7.7J

{ e(P)A.dest.(i)
when i:ENV C

}

for 1=1 to E
do e(P)A.dest.(i)

when i:ENV { CQ; i; }

when dCENV e(P)A.dest.(?:d)

I { let old.env = this.env
I e(P)A

=> I C
I reset(old.env)
I }

=> I for 1=1 to E
I_do e(P)A

=> { CQ; C j }

=> e(P)A

[R7.8]

[R7.9]

[R7.10]

[R7.ll]

- 198 -

B.8 Optimising Continuations

let v(D).cont.(I)A be
switchon E into
{ case [s]: { CQ; C^

endcase
Co }

}
when

where

=>

let v(D).cont.(I, jump)A be
switchon E Into
{ case [s]: { CQ; C3;

endcase

}

C2 } [R8.1]

C1 “ e(P).cont.(I)A or C,^e(P, I)A
e is not one of: fix.here, trans.load,

trans.entry, trans.thunk.entry, trans.exit, trans.thunk.exit,
trans.jump.if.true or trans.jump.if.false.

C3 = e(P) .cont. (I, boo)A or (depending on C.) C^e(P, I, boo)A
boo= true.jump if C„-rnn 1
boo= jump

:COD
otherwise

when

where

or
when

where

 ̂ eo
iet *0 1
0* C1 ’

V V
=>

" { eolet I
c~; c.0

}

“0 * ^3 *

61

[R8.2]

C1 ” e(P).cont.(I)A or C, = e(P, I)A
and (fixed or fixing or global)
and 1̂ is one of: fix.here, trans.exit or trans.thunk.exit.
C3 = e(p)*cont.(I, boo)A or (depending on C,) Co=e(P, I, boo)A
fixed = I=IQ and E=here(P)
fixing= 1=1 and E=forward(P)
global= I free in the procedure where this transformation is applied,
boo = true.jump if (fixing and C2:C0D) or fixed or global
boo = false.jump otherwise

Cj is in the context of:
for I2=e2 to e„ do { fix.here(ln); Cn; C,; C„ }

IQ = e!I2 and^I = er(I2+l) 0 0 1 2
C3 as before
boo = true.jump if C2:C0D, boo = false.jump otherwise

{ C, =>■'I > ^2 * ^3 ̂
when C2= trans.jump.to(i, false.jump)

{cx; c3 } [R8.3]

test E„

when

where

=> I
I

then { ' V I1’E1 *_°r I p
J^= trans.jump.to

trans.jump.if.false or trans.jump.if true
E ^ jump or not jump or E = true, jump
J„= reverse or J.
Ej== the result Iof R8.1 or R8.2

[R8.4]

\

- 199 -

when C^=

for I=e
do C, 0 to e^-1

unless e =0
do C 1

[I/e^C^

=> for I=eQ to e: do Cj

B.9 Optimising Transformations

when

=>

test E=max.reg
then
{ let old.env = this.env
let D = trans.dump(R)
[R/R+l]{D/R}C
reset(old.env)

} or
{ let nxt = next(R)

[nxt/R+1]C
_} rename D=>dmp.loc

 ̂ C • Co } and C„_2 e(P)A.dest. (R+l)
R ̂ reg or R = first.reg

where E = weight*[s] if C = e(P [s], P)A.dest.(R+l) (p contains
n = R otherwise 1E = R otherwise

{ let old.env = this.env
C1
{ let old.env = this.env
C„

}
reset(old.env)

}
reset(old.env)

=>

trans.load(E, I).dest.(I)
when E f- domain. of(I)

trans.load(E, I).dest.(I)"
when E = domain.of(I)

Eg(domain.of(E), E, P)A
when EfI

=>

=>

=>

{ let old.env = this.env
C,

}
reset(old.env)

make.type(I, E)

EQ(domain.of(xx), xx)A
where xx = E

[R8.5]

[R9.1]

an [s])

[R9.2]

[R9.3]

[R9.4]

[R9.5]

- 200 -

{ co{ let ntry.code = Eq
let exit.code = E^
let skip.code =
trans.jump.to(P^)
trans.thunk.entry(P)
C1trans.thunk.exit(P)

, C2
}

when i:REG
and i is free in

{ C0{ let ntry.code = Eq
let exit.code = E^
let skip.code = E„
{ let old.env = tnis.env
let dmp.loc = trans.dump(i)

> | trans.jump.to(P^) [R9.6]
trans.thunk.entry(P2)
{dmp.loc/i}C^
trans.thunk.exit(P^)
{dmp.loc/i}C2
reset(old.env)

B.10 BCPL

Every [s]

Every 'curly' valuator v
and every domain d_

) 1

{ c
e 0 > e i ’ { }
C1

{ C,
e0 ” ’e2
C1

nire or etnn

=>

=>

=>

=>

let v(P) be C
when not v(P):C0D

=>

=>

=>

replaced by its appropriate
'tag' or 'selector'

respectively replaced by
trans.v and D..d

{ C

}

0test eQ then ê or e2
C1

{ C0if eQ then ê
C1_}

’{ C
unless eQ do

. Cl
pn~e where pn is a 'selector'

let v(P)=valof C

[RA.l]

[RA.2]

[RA.3]

[RA.4]

[RA.5]

[RA.6]

[RA.7]

and for every case inside C above:

case I: E; endcase => case I: resultis E

*[8,...s] => size" [Sĵ .. .sn]

[RA.8]

[RA.9]

- 201 -

when ejrINT e0(PQ, P ^ A | => | e (P e P)A
I I wn lere e2=make.num(e^)

B.ll Cross Reference

Rule Def.|Use

Normalisation
Rl.l 29 130, 43, 61, 62, 65, 6 6, 73, 89, 92, 93, 94, 95, 99 117

213> 214, 215, 216’ 217, 218, 219> 220> 221> 222» 2231229, 230, 231, 232, 233, 234, 235
R1.2 30 |61, 65, 6 6, 137, 145, 221, 222, 223, 235
Rl.3 30 |117, 213, 215, 217, 233
R1.4 80 |99, 213, 217, 219
R1.5 80 |not used

State Analysis
R2.1 34 |36
R2.2 34 |36, 61, 65, 6 6, 73, 93, 94, 95
R2.3 34 |36
R2.4 34 |36
R2.5 35 |36
R2.6 35 |not used
R2.7 37 |36, 61, 6 6, 73, 93, 94, 95
R2.8 40 |43, 65, 92, 93
R2.9 40 |43, 58, 61, 62, 65, 6 6, 73, 89, 92, 93, 94 95
R2.10 41 |43 *
R2.ll 58 |61, 62, 65, 6 6, 73, 89, 92, 93, 94, 95
R2.12 59 |61, 65, 66
R2.13 60 |61, 66
R2.14 60 |61, 6 6, 73, 93, 94, 95
R2.15 61 |66

Syntactic Transformations
R3.1 44 |45, 61, 62, 65, 6 6, 73, 92, 93, 99, 117, 137, 145 213

1233, 234, 235 ’ ’
R3.2 44 145, 61, 62, 65, 6 6, 73, 89, 92, 93, 94, 95, 99, 117 124

1213, 214, 215, 216, 217, 218, 219, 220, 221, 222 223* 227
1230, 231, 232, 233, 234, 235 ’ *

R3.3 44 |45, 61, 62, 65, 6 6, 73, 89, 92, 93, 94, 95, 117, 137 145
1217, 233 ’ ’ ’

R3.4 44 |137
R3.5 44 |45, 65
R3.6 70 |73, 93, 95, 135
R3.7 116 |117, 124, 215, 229, 230, 233, 234
R3.8 136 1137

[RA.10]

, 124, 137
, 227, 228

218, 227,

137, 145,
228, 229,

213, 215,

- 202 -

Splitting Continuations
R4.1 100 1101,

I 234
122, 125, 145, 216, 218, 221, 222, 223, 227, 228, 229, 230,

R4.2 100 1101, 121, 125, 145, 213, 214, 215, 216, 217, 218, 219, 220, 221,
1228, 229, 230, 231, 232, 233, 234, 235

R4.3 101 1122, 145, 218, 227, 233, 234, 235
R4.4 101 1125,

1234,
145,
235

218, 219, 220, 221, 222, 223, 227, 228, 229, 231, 232,

R4.5 102 1 101, 121, 213
R4.6 102 1 101, 121, 122, 125, 213, 214, 215, 216, 217, 222, 223, 229, 230,
R4.7 125 1129, 230, 234

48
49
50
50
71
72

R5.4
R5.5
R5.6
R5.7
R5.8
R5.9
R5.10 72
R5.ll 73
R5.12 102
R5.13 102
R5.14 102

R5.15 102
R5.16 126
R5.17 126
R5.18 127
R5.19 127
R5.20 138
R5.21 145

Destination Analysis
R5.1 47 |52, 61, 62, 66, 73, 93, 140, 235
R5.2 47 |52, 61, 62, 65, 73, 89, 92, 93, 103, 121, 213, 214, 215, 216, 217
R5.3 48 152, 61, 62, 66, 73, 93, 94, 95, 103, 122, 138, 140, 141, 142, 149,

150, 151, 216, 218, 221, 222, 223, 227, 228, 229, 233, 235
52, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95, 138, 140, 141, 150
62
61, 62, 65, 66, 140
61, 66, 100, 141, 150, 151, 216, 228, 229
73, 94, 95, 138, 141, 142, 150, 151, 221, 222, 223, 235
73, 94, 95, 142, 151, 221, 222, 223, 235
73, 94, 95, 138, 141, 142, 150, 151, 221, 222, 223, 235
93, 95, 141
103, 122, 149, 218, 227, 233, 234, 235
103, 149, 150, 151, 219, 220, 221, 223, 228, 229, 230, 232, 233, 235
103, 121, 128, 149, 150, 151, 213, 214, 215, 216, 217, 218, 219, 220,
221, 227, 228, 229, 230, 231, 232, 233, 234, 235
128, 150, 214, 215, 216, 218, 220, 221, 227, 231, 234, 235
128, 230
128, 234
128, 233, 234, 235
229
139, 142
144, 151

Continuation Analysis
R6 1 53 156, 65, 93, 109, 110, 111, 121, 122, 129, 149, 150, 151, 213,

1215 , 216, 217, 218, 219, 221, 222, 223, 227, 228, 229, 230, 233,
R6. 2 54 156, 65, 66, 81, 89, 92, 93 , 94, 95, 108, 109, 110, 111, 121,

| 141 , 150, 213, 214, 215, 216, 217, 219, 221, 227, 228, 229, 234
R6. 3 55 156, 65, 93 , 110 , 213 , 217
R6 4 75 181, 94, 95 , 142
R6 5 76 1223
R6 .6 76 181, 93, 95 , 141 , 150 , 215 , 216 , 221 , 227 , 235
R6 .7 78 181, 92, 93 , 94, 95, 109, 110, 111, 121, 129, 141, 150, 213, 214,

1216 , 217, 219, 221, 227, 228, 229, 234
R6 .8 80 |89
R6 .9 105 1109 , 110, 111, 121, 129, 149, 150, 213, 214, 215, 216, 217, 218,

I 220 , 221, 227, 228, 229, 230, 231, 232, 234, 235
R6 .10 106 1109 , 110, 111, 121, 122, 129, 149, 150, 151, 213, 214, 215, 216,

1218 , 219, 220, 221, 222, 223, 227, 228, 229, 230, 231, 232, 233,

- 203 -

1235
R6.ll 106 1151, 221, 222, 223, 235
R6.12 106 1146, 151
R6.13 118 1121, 122, 215, 229, 233
R6.14 119 1121
R6.15 119 1121, 229
R6.16 119 1122, 215, 233
R6.17 119 1122, 215, 233
R6.18 129 1230, 234
R6.19 139 1141, 144
R6.20 139 1142
R6.21 146 1144, 150, 151

Environment Analysis
R7.1 83 186, 92, 94, 95 , 110 , 111 , 14R7.2 83 186, 92, 94, 95, no, 111

1220, 221, 222, 223, 233
R7.3 83 1121, 122, 213, 215, 217, 233
R7.4 84 186, '93, 110, 121, 140, 149,
R7.5 85 186, 92, 93, 109, 110, 121

1235
R7.6 85 186, 89, 92, 93, 94 , 95, 109

1 150, 213, 214, 215, 216, 217
1231, 232, 233, 234, 235

R7.7 120 1122, 215, 233
R7.8 130 1232, 235
R7.9 130 1131, 234
R7.10 131 1234
R7.ll 131 1234, 235

Optimising Continuations
R8.1 107 1109, 110, 111, 121, 122, 149.

1219, 220, 221, 222, 223, 227,
R8.2 107 1109, 110, 111, 121, 122, 141,

1217, 218, 219, 220, 221, 222,
1234, 235

R8.3 108 1151
R8.4 109 1217
R8.5 120 1121, 122, 215, 229, 233

Optimising Transformations
R9.1 86 193, 95, 140, 141, 149, 150,
R9.2 87 1142, 151
R9.3 88 |not used
R9.4 88 1216
R9.5 88 |not used
R9.6 140 1142, 151

BCPL
RA.l 63 165, 66, 89, 92, 93, 94, 95

1149, 150, 151, 213, 214, 215
1227, 228, 229, 230, 231, 232

RA.2 63 165, 66, 89, 92, 93, 94, 95
1149, 150, 151, 213, 214, 215

, 151, 214, 220, 221, 222, 223
121, 122, 142, 151, 213, 214, 215, 217

16, 218, 227
122, 140, 149, 213, 218, 227, 233, 234

110, 111, 121, 122, 131, 140, 141, 149
218, 219, 220, 221, 227, 228, 229, 230

150, 151, 213, 214, 215, 216, 217, 218
228, 229, 230, 231, 232, 233, 234, 235
142, 149, 150, 151, 213, 214, 215, 216
223, 227, 228, 229, 230, 231, 232, 233

, 217, 219, 221, 227, 231

109, 110, 111, 121, 122, 140, 141, 142,
216, 217, 218, 219, 220, 221, 222, 223,
233, 234, 235
109, 110, 111, 121, 122, 140, 141, 142,
216, 217, 218, 219, 220, 221, 222, 223,

£
£
£
£
£
£
£
£

appendix c

Operators

C.l Source
d:D=Any Domain

01:
. » .: [[T x D x D] > D]
This
d hiSwhen eXPression will take the value
il Bot“ ’ 2 18 FalS6’ T°PD When c is TopT and BotD when t

02:
-=>-: t [[D x [D > D.] J > DJ
f:[D > D] 1 1
x:D
d -> >x.fx is the same as (Xx.fx)d
This operator which reads as 'produce', is the reverse of application so
that we can read equations from left to right. ’

03: ---- — ------------ ---------- —
•£. [[[D > D] x [D > D J J > [D > D„]]
f: [D » D] 1 1 2 2
g:[D1 > L]
(f o g)d = g(fd)
This is the reversed form of the composition operator

04:

f:[D > D]
g:[D > [D > D]]
(f + g)d1 = g(fd)d1
This operator will normally be used for expressions without side effects.

05: --------- — ------ ------------------ ---------

^ ; :i & A ' 1 D X D 2 l l l t I D M D 2 ' D3 1 1 J M D l > D 3 J
f: [D > [D x D]]
g:[D > [D2 > D]]
(f ^ g)d1 = gdd2 where <d,d2> = fd.
Reversed form of the Star operator used by C.Strachey in the semantic
equation for the while-loop.

- 206 -

06:
• | .: [D. + ... + D]
i:N and 1 <= i <=nn
d|D is the projection of d into the subdomain of [D̂ + ... + D̂]

07:
• In.
d:D. i:N and 1 <= i <= n
d In [[Dj + ... + D̂] is the injection of d into [D̂ + ... + D̂]

08:

Semantic Context
.+.:[[[Dj x ... x D] x N] > D̂]
d=<D...... d.,..., 3 >:[D, x ... x D. x ... x D]l i n l i ni:N and 1 <= i <= n
dti = d. l
Syntactic Context
.+.:[N x S] > Si]
[s]=[sl ...sn]:S
i:N and 1 <= i <= n
ii[s] = [Si]
So that is used to extract individual components of tuples or node
offspring.

09:

d=<D,,..., d., d(i+l),..., d >:[D. x ... x D]
i:N and 1 <=1i <= n
dfi = <d(1+1),...,d >
Operator used to remove elements from tuples.

010 :
.%.
d =<D ,...,d.>:[D x ... x D.]
d,=<d .,...,d1> :[D . x ... x D1]

j-S+l <J n
d/d. = <D , .. . ,d. , d ., . .. ,d y 1 1 l i nOperator used to concatenate tuples.

011:
.?.
d:[Dx + ... + D]
i:N and 1 <= i <J= n
d?D. is True if d is in the subdomain of [D̂ + ... + D^], otherwise is
False

d L t W u 5 lsiCh ^ ifferenCe-iW;Lth US6d by the transformation process todistinguish between compile and run-time type checking.

013:
.o.[[D x D] » T]
Where o is one of: = , Eq or Ne;

ineq«ality^operator?re e’"lv*le,,t f°"“ °f «““* ‘-a third one is the

014: “ ------- --------------- --------
•o.:[[N x N] > T]
Where o is one of Lt, Le, Gt, Ge;
i.e: these are the relational operators on integers.

015: “ ~-----
[/]:[[D x D x D] > D]
d:D=[D x ... xD. x ... x D]
i:N and 1 <= i <=1n n
r :D.
x:D^
d[dl/d2j=<dil’*--> d^Ci-D, r, djtCi+l),... >

I r = (>x. x=d > d (d ti)x) if D.=[D, > DJ
where <| 1 1 1 2

I r = if is a selector and d̂ = dti

This is the postfix operator to create new environments and states, (the
concrete notation dSEL, where SEL has been defined as a semantic selector
(==), is equivalent to SELd.)

016: ------------------- --------
Cond:[[D x D] > T > D]
Cond<d, d > = *t. t?T > (t > d, d), (D=C0D » Wrong, Bot).
Wrong: COD 1 6 d '

017:
SCond
No semantic difference with Cond. Used by the transformation process to
distinguish between compile and run-time type checking.

018: -------------— --- —
Fix:[D > D]
Fix = \F.|_lnFn(Bot),
Fix(f) is the minimal fixed point of f; so Fix(f) = f(Fix(f)).

- 208 -

019:
Strict:[[D » D] > [D > D]]
(Strict f)a^ = TopD, Botp if d^=Top, Botp, otherwise f(x).

C.2 Target

020:
.!. Vector Application
Provides a way of selecting an element of a vector. A vector is any set of
consecutive storage cells. Such a set is introduced by the BCPL function
newvec and the ISL primitive functions open.node and forward.vec. The basic
form of a vector application is E^IE^. !E is the same as E!0.

021:
Selector Application

A selector application is the process of applying a selector to perform a
byte extraction on a given data structure. Selectors are predefined by the
ISL interface, they are: type, pi, p2 ... and weight.

Priority of operators:

The top of the list is the highest priority.
1. name, constant, bracketed expression, valof
2. function application.
3. monadic operators: ! not
4. !
5. ~
6 . + -
7. = Eq Ne Ls Le Gr Ge
8. conditional expression

APPENDIX D

Stoy's Final Example

---------Snapshot D.l: Stoy's Final Example. Original Specification
Syntactic C a t e g o r i e s — ------------------
i:Ide.
c: Com.
1:Leo.
e :Exp.
o:Ops.
n :Nml.
q :Str.

Synt

identifiers
commands
labeled com.
expressions
binary operators
numerals
strings

Else c^
e In c.u l . i ijc i_ 1 : =e J.11 c

Call e(e^) | Resultis

ax
c ::= Dummy | If e Then c

Let i=e In c, | Let
Call e
c. Repeatwhile e

1 ::= l:c
e : := i | n | q | 6 ^ 2 |

Let i:=e^ In e | e
Rec i Fn i,.e, | Rec i^Rt c

c.;c | While e Do c
Gr*-- - 1I Goto e | Begin 1

e | Break
j > ...12 End

Return | e:=e^ |

If e Then e Else eQ | Let i=e, In

o : := + 1

I -X
l(e2) I
c i Rt

/\ I \/ I >

Fn i.e 1 Rt Fn i. , 1 Is c Valof c

<= I >=
Semantic Domains
T=[{ TRUE } + { FALSE }].
N.
Q.

1 :L.
s: S.
A.

c:C=[S > A].
d : D = [T + N + Q + C + F + P +
v : V = [T + N + Q + C + F + P +
e:E=D.
k:K=[E > C].
w:W=[K > C].
f:F=[D > W].
P=[D » G].
G=[C » C].

p:U=[[Ide > D] x K x C x C].

Semantic Domains of 'Interest'
ENV=U.
REG=E.
TEM=[F + P + G].
STA=S.
QUO.

G + L]
G].

truth values
integers
quotations
locations
machine states
answers
command cont.
denoted values
expression values
denotations
expression cont.
expression closures
abstractions
routines (1 param.)
command closures
environments

environments
registered values
templates
states
quotations

- 210 -

Snapshot D»1 (continued)
Semantic Primitives (undefined)
N:[Nml » N].
Q:[Str » Q].
0: [Ops » V > V >■ W].
Assign: [L >■ V > C > C] .
LVal: [E > [L » C] > C] .
RVal:[E > [V > C] > C].
Wrong:C.

Semantic Selectors
pRES==pi2.
pRET==pt3.
pBRK==piA.

Semantic Function for Commands
C:[Com > U > G]. (D.1.1)

C[Dummy]pc=
c. (D.1.2)

C[If e Then c. Else c]pc=
R[e]p{){v. Cond<C[c^] pc,C[c2]pc>v}. (D.1.3)

C[c ;c„]pc=
C[c1Ip{C[c2]pc}. (D.1.4)

C[While e Do c.]pc=
Fix{>c'.{R[eJp'{>v.Cond<C[c.]p'c',c>v}
Where p'=p[c/BRK]}}. (D.1.5)

C[Let i=e In c.]pc=
E[e]p{^e.C[c^](p[e In D/[i]])c}. (D.1.6)

C[Let i:=e In c,]pc=
R[e]p{>v.LVal{v In E}{^1•C[c1](p [1 In D/[i]])c}}. (D.1.7)

C[Goto e]pc=
R[e]p{ Yv.v?C>v|C,Wrong}. (D.1.8)

C[Begin 1.; • End]pc=
Fix(X<c ,...,c '>.

{<C(2i[l1])p,c//,...,C(2f[l J)p'c>
Where p'=p[c' In D/lf[1^]]...[c' In D/l+tl^]]})^1« (D.1.9)

C[Call e]pc=
R[e]p{Yv.v?G>{v|G}c .Wrong}. (D. 1.10)

C[Call e(e.)]pc=
R[e]p{)jv.v?P>E[e]p{^e'. (v | P)e 'c},Wrong}. (D. 1.11)

C[Resultis e]pc=
R[e]p{!*v.pRES{v In E}}. (D.1.12)

- 211 -

Snapshot D.l (continued)C[Break]pc=
pBRK.

C[Return]pc=
pRET.

C[cj Repeatwhile e]pc=
Fix{>c'.{C[c]p'{R[e]p'{>v.Cond<c',c>v}}
Where p'=p[c/BRK]}}.

C[e:=e^]pc=
L[e]p{^l.R[e^]p{^v' .Assign lv'c}}.

Semantic Functions for Expressions
L:[Exp » U > IL > C] > C].

L[e]pk:[L > C]=
E[e]p{>e.LVal ek}.

R: [Exp > U >• [V > C] > C] .

R[e]pk:[V > C]=
E[e]p{>e.RVal ek}.

E: [Exp » U > W].

E[i]pk=
k{p[i]}.

E[n]pk=
k{N[n] In E}.

E[q]pk=
k{Q[q] In E}.

E[e oe„]pk=
R[e1Jp{>v.R[e2]p{>v'.O[o]vv'k}}.

E[If e Then e Else e]pk=
R[e1Jp{>v.Cond<E[e2]pk,E[e3]pk>v}.

E[Let i=e. In e„]pk=
E[e1]p{$e.E[e2j(p[e In D/[iJJ)k>.

E[Let i:=e. In e]pk=
Rte^piW.LValTv In E} {>1 .E [e2 J (p [1 In D/[l]])k}}

E[e,(e)]pk=
R le1Jp{>v.E[e2]p{){e'.v?F>(v|F)e'k,Wrong}}.

E[Fn i.e]pk=
k{ Odk.Efe^] (p[d/ [i]])k) In E} .

(D.l.13)

(D.l.14)

(D.l.15)

(D.l.16)

(D.l.17)

(D.l.18)

(D.l.19)

(D.l.20)

(D.1.21)

(D.l.22)

(D.l.23)

(D.l.24)

(D.1.25)

(D.l.26)

(D.1.27)

(D.1.28)

(D.l.29)

(D.1.30)

- 212 -

Snapshot D.l (continued)
E[Rt c]pk=
k{{>c.C[c](p[c/RET])c} In E}. (D.l.31)

E[Fn i. Is c]pk=
k{(>dc.C[c](p[d/[i]][c/RET])c) In E}. (D.l.32)

E[Valof c]pk=
C[c](p[k/RES])Wrong. (D.l.33)

E[Rec i Fn i .e]pk=
k{Fix(>fdk.E[e1J(p[d/[i1]][f/[i]])k) In E}. (D.l.34)

E[Rec i Rt c]pk=
k{Fix{>cc'.C[c](p[c'/RET][c/[i]])c'} In E}. (D.l.35)

- 213 -

,— -— ----------- Snapshot D.2: Stoy's Final Example. BCPL
let trans.C(node).cont.(continue, jump) be switchon typWode into ---------
{ case T..Dummy: ^ *3 'U R4‘5’ R6*10> R?'5’ m 'l> ^ 1

trans.jump.to(continue, jump); endcase
by Rl.l, R6.1, R6.10, R8.1, RA.l (D.2.2)

case N3••ConditionalCom:
{0 let continuel = forward(D..COD)

trans.R(pl-node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel) 6
trans.skip.if.in(first.reg, D..T)
trans.jump.to(Wrong, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(first.reg, fcond.code)
trans.C(p2~node).cont.(continue, true.jump)
fix.here(fcond.code)
trans.C(p3~node).cont.(continue, jump)

}0; endcase
Rfi R1’da ?3*B{3ntimeS’ R4’2, R^*6/twice, R5.2, R5.14, R6.1
r r’?/! ■Ce’ A / R6.10/twice, R7.6/3 times, R8.1/twiceR8.2/twice, RA.1/4 times, RA.2/6 times (D.2.3)

case N2..Sequence:
{ let continuel = forward(D..COD)
trans.C(pl^node).cont.(continuel, false.jump)
fix.here(continuel)
trans.C(p2~node).cont.(continue, jump)

}; endcase
rI R4-6/twice« R6-9> R6-10, R7.6/twice, R8.1, R8.2RA.1/3 times, RA.2/3 times ̂ /x(D.2.4)

case N2..While:
{ let old.env = this.env
let restart.code = here(D..C0D)
declare(D..COD, continue, BRK)
{ let continuel = forward(D..COD)
trans.R(pl-node).cont.(continuel, false.jump).dest.(first.res)
fix.here(continuel)
trans.skip.if.in(first.reg, D..T)
trans.jump.to(Wrong, true.jump)
trans.jump.if.false(first.reg, continue)
trans.C(p2~node).cont.(restart.code, true.jump)

reset(old.env)
}; endcase
by R1.3, R1.4, R3.2/4 times, R3.3, R4.2, R4.6, R5.2, R5.14
R6.1/twice, R6.2/twice, R6.3, R6.7, R6.9, R6.10/twice, R7.2 R7.3
R7.6/twice, R8.2/3 times, RA.1/3 times, RA.2/6 times ’ (D.2.5)

- 214 -

________________________ Snapshot D.2 (continued)__________________________
case N3..DefinitionByDenotationCom:

{0 let continuel = forward(D..COD)
trans.E(p2~node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
{ let old.env = this.env
declare(domain.of(first.reg), first.reg, pl^node)
trans.C(p3~node).cont.(continue, jump)
reset(old.env)

}0; endcase
by Rl.l, R3.2/3 times, R4.2, R4.6, R5.2, R5.14, R6.9, R6.10, R7.1, R7.2
R7.6, R8.1, R8.2, RA.1/4 times, RA.2/3 times (D.2.6)

case N3..InitialisedDefinitionCom:
{0 let continue2 = forward(D..COD)

trans.R(p2"node).cont.(continue2, false.jump).dest.(first.reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
LVal(first.reg).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
{ let old.env = this.env
declare(domain.of (first.reg), first.reg, pPnode)
trans.C(p3~node).cont.(continue, jump)
reset(old.env)

}0; endcase
by Rl.l, R3.2/4 times, R4.2/twice, R4.6, R5.2, R5.14/twice, R5.15
R6.9/twice, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2/twice, RA.1/4 times
RA.2/4 times (D.2.7)

case N1..Goto:
{ let continuel = forward(D..COD)
trans.R(pi"node).cont.(continue 1, false.jump).dest.(first.reg)
fix.here(continuel)
trans.skip.if.in(first.reg, D..COD)
trans.jump.to(Wrong, true.jump)
trans.jump.to(first.reg, true.jump)

}; endcase
by Rl.l, R3.2, R4.2, R5.2, R5.14, R6.1/twice, R6.2, R6.7, R6.9, R7.6
R8.2/3 times, RA.1/twice, RA.2/3 times (D.2.8)

- 215 -

Snapshot D.2 (continued)
case NX..Block:

{ let node.vec = open.node(node)
{ let old.env = this.env
let code.vec = forward.vec(Inode.vec, D..COD)
for inx=l to Inode.vec
do declare(D..COD, code.veclinx, pl'node.vec!inx)
for inx=l to Inode.vec—1
do { fix.here(code.vecIinx)

j trans•C(p2*node.vec!inx).cont.(code.vec!(inx+1), false.jump)

unless !node.vec=0
do { fix•here(code.vecI!node•vec)

trans.C(p2 node.vec!Inode.vec).cont.(continue, jump)

freevec(code.vec)
reset(old.env)

}
freevec(node.vec)

}; endcase
by Rl.l. R1.3, R3.2/4 times, R3.3, R3.7, R4.6/twice, R6.10, R6.13
R6.16, R6.17, R7.2, R7.3, R7.6/twice, R7.7, R8.1, R8.2, R8.5, RA.1
RA.2/4 times, RA.6/3 times 2 9)

case N1..Call:
{ let continuel = forward(D..COD)
trans.R(pl~node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
trans.skip.if,in(first.reg, D..G)
trans.jump.to(Wrong, true.jump)
trans.call(first.reg).cont.(continue, jump).dest.(first.reg)

}; endcase
S R3«2/twice, R4.2, R4.6, R5.2, R5.14, R5.15, R6.1, R6.2, R6 .6
R6.7, R6.9, R6.10, R7.6, R8.1, R8 .2/twice, RA.1/twice, RA.2/3 times

(D.2.10)

- 216 -

_________________________Snapshot D.2 (continued)_________________________
case N2..Call:

{0 let continue2 = forward(D..COD)
trans.R(pl~node).cont.(continue2, false.jump).dest.(first.reg)
f ix.here(continue2)
trans.skip.if,in(first.reg, D..P)
trans.jump.to(Wrong, true.jump)
{ let continuel = forward(D..COD)
test weight/'p2~node=max.reg
then { let old.env = this.env '

let dmp.loc = trans.dump(first.reg)
trans.E(p2~node).cont.(continue 1, false.jump

).dest.(first.reg)
fix.here(continuel)
trans.call(dmp.loc, first.reg).cont.(continue, jump

).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(first.reg)

trans.E(p2~node).cont.(continuel, false.jump).dest.(nxt)
fix.here(continuel)
trans.call(first.reg, nxt).cont.(continue, jump

).dest.(first.reg)
}

}0; endcase
by Rl.l, R3.2/3 times, R4.2/twice, R4.6, R5.2, R5.14/twice, R5.15, R6.1
R6.2, R6.6, R6.7, R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/3 times
R9.1, RA.1/5 times, RA.2/6 times (D.2.11)

case N1..Resultis:
{ let continuel = forward(D..COD)
trans.R(pl'node).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
trans.jump.to(look.up(RES), true.jump)

}; endcase
by Rl.l, R3.2/twice, R4.1, R4.2, R5.2, R5.3, R5.7, R5.14, R6.1, R6.9
R7.4, R7.6, R8.2/twice, R9.4, RA.1/twice, RA.2/twice (D.2.12)

case T..Break:
trans.jump.to(look.up(BRK), true.jump); endcase

by Rl.l, R3.2, R6.1, R7.4, R8.2, RA.l (D.2.13)

case T..Return:
trans.jump.to(look.up(RET), true.jump); endcase

by Rl.l, R3.2, R6.1, R7.4, R8.2, RA.l (D.2.14)

- 217 -

-------— -------------------Snapshot D.2 (continued')
case N 2 . . R e p e a t W h i l e : --------------

{ let old.env — this.env
let restart.code = here(D..COD)
declare(D..COD, continue, BRK)
{0 let continue2 = forward(D..COD)

trans.C(Prnode).cont.(continue2, false.jump)
fix.here(continue2)
{ let continuel = forward(D..COD)

f ix?here(continue I)0'*'00” tinUe‘' j“"P) •d*“ -< « " ' • « .)
trans.skip.if.in(first.reg, D..T)
trans.jump.to(Wrong, true.jump)
test true.jump
then { trans.jump.if.true(first.reg, restart.code)

trans.jump.to(continue, jump)

^ or trans.jump.if.false(first.reg, continue)
reset(old.env)

}; endcase
by Rl.l, R1.3, R1.4, R3.2/4 times, R3.3, R4.2 R4 6 RS ? rs i

R7*3 R7ift/S’ R6'2/tWi?e’ R6'3, R6,7’ R6*9/twice,*R6.10/twice * R7.2 7.3, R7.6/twice, R8.2/4 times, R8.4, RA.1/3 times, RA.2/7 times
(D.2.15)

case N2..Assignment:
{0 let continue2 = forward(D..COD)

{ let continuel = forward(D..COD)
test weight~p2''node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(first.reg)
trans.R(p2“node).cont.(continuel, false.jump

) .dest.(first.reg)
fix.here(continuel)
Assign(dmp.loc, first.reg).cont.(continue, jump)
reset(old.env) J

}
or { let nxt = next(first.reg)

Lr“ h;r‘£ “ i ^ n ”t'<contlnue1'
} Assign(first.reg, nxt).cont.(continue, jump)

}0; endcase
ky R1 • 1, R3.2/3 times, R4.2/twice R4 rs? dr i//«- j
».I0. R7.6/twice, ,8a,

(D.2.16)

- 218 -

__________________________ Snapshot D.2 (continued)__________________________
let trans.L(node).cont.(continue, jump).dest.(reg) be

by Rl.l, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.l (D.2.17)
{ let continuel = forward(D..COD)
trans.E(node).cont.(continuel, false.jump).dest.(reg)
fix.here(continue 1)
LVal(reg).cont.(continue, jump).dest.(first.reg)

} by Rl.l, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1
R8.2, RA.l/twice, RA.2/twice (D.2.18)

let trans.R(node).cont.(continue, jump).dest.(reg) be
by Rl.l, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.l (D.2.19)

{ let continuel = forward(D..COD)
trans.E(node).cont.(continue 1, false.jump).dest.(reg)
fix.here(continuel)
RVal(reg).cont.(continue, jump).dest.(first.reg)

} by Rl.l, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1
R8.2, RA.l/twice, RA.2/twice (D.2.20)

let trans.E(node).cont.(continue, jump).dest.(reg) be
switchon type^node into

by Rl.l, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.l (D.2.21)
{ case T..Ident:

look.up(node).dest.(reg); trans.jump.to(continue, jump); endcase
by Rl.l, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R7.4, R8.1, RA.l/twice

(D.2.22)

case T..Numeral:
trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase
by Rl.l, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.l/twice, RA.2

(D.2.23)

case T..Quotation:
trans.Q(node).dest.(reg); trans.jump.to(continue, jump); endcase
by Rl.l, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.l/twice, RA.2

(D.2.24)

- 219 -

Snapshot D.2 (continued)
case T..Plus: case T..Minus: case T..Mult: case T..Div: case T..And:
case T..Or: case T..GreaterThan: case T..LessThan: case T..Equal:
case T..LessOrEqual: case T..GreaterOrEqual: case T..NotEqual:

{0 let continue2 = forward(D..COD)
trans.R(pl"node).cont.(continue2 , false.jump).dest.(reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
test weight~p2~node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.R(p2,'node) .cont. (continuel, false, jump) .dest. (reg)
fix.here(continuel)
trans.0(type"node, dmp.loc, reg).cont.(continue, jump

).dest.(reg)
reset(old.env)

}
or {let nxt = next(reg)

trans.R(p2"node).cont.(continuel, false.jump).dest.(nxt)
fix.here(continuel)
trans.0(type node, reg, nxt).cont.(continue, jump

).dest.(reg)

}0; endcase
vl fn*1;/?;273 timeS’ R4*2/twice> R5.13, R5.14/twice, R6.9/twiceR6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/7 times, RA.2/7 times

(D.2.25)
case N3..ConditionalExp:

{0 let continuel = forward(D..COD)
trans.R(pl node).cont.(continue 1, false.jump).dest.(reg)
fix.here(continue 1)
trans.skip.if.in(reg, D..T)
trans.jump.to(Wrong, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.E(p2 node).cont.(continue, true.jump).dest.(reg)
fix.here(fcond.code)
trans.E(p3 node).cont.(continue, jump).dest.(reg)

}0; endcase
by Rl.l, R1.4, R3.2/3 times, R4.2, R4.4/twice, R5.13/twice, R5.14, R6.1
R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twlce
R8.2/twice, RA.1/4 times, RA.2/6 times (D.2.26)

- 220 -

________________________ Snapshot D.2 (continued)__________________________
case N3..DefinitionByDenotationExp:

{0 let continuel = forward(D..COD)
trans.E(p2~node).cont.(continuel, false.jump).dest.(reg)
fix.here(continuel)
{ let old.env = this.env
declare(domain.of(reg), reg, pl~node)
trans.E(p3~node).cont.(continue, jump).dest.(reg)
reset(old.env)

}0 ; endcase
by Rl.l, R3.2/3 times, RA.2, R4.4, R5.13, R5.14, R6.9, R6.10, R7.1
R7.2, R7.6, R8.1, R8.2, RA.1/4 times, RA.2/3 times (D.2.27)

case N3..InitialisedDefinitionExp:
{0 let continue2 = forward(D..COD)

trans.R(p2~node).cont.(continue2, false.jump).dest.(reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
LVal(reg).cont.(continuel, false.jump).dest.(first.reg)
fix.here(continuel)
{ let old.env = this.env
declare(domain.of(first.reg), first.reg, pl^node)
trans.E(p3~node).cont.(continue, jump).dest.(first.reg)
reset(old.env)

}0 ; endcase
by Rl.l, R3.2/4 times, R4.2/twice, R4.4, R5.13, R5.14/twice, R5.15
R6.9/twice, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2/twice, RA.1/4 times
RA.2/4 times (D.2.28)

- 221 -

------------------------Snapshot D.2 (continued)
case N2..Application:

{0 let continue2 = forward(D..COD)
trans.R(Prnode).cont.(conttnue2 , false.jump).dest.(reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
test weight~p2~node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2“node).cont.(continuel, false.jump).dest.(reg)
fix.here(continue L)
trans.skip.if,in(dmp.loc, D..F)
trans.jump.to(Wrong, true.jump)
trans.call(dmp.loc, reg).cont.(continue, jump

).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2~node).cont.(continuel, false.jump).dest.(nxt)
fix.here(continue 1)
trans.skip.if.in(reg, D..F)
trans.jump.to(Wrong, true.jump)
trans.call(reg, nxt).cont.(continue, jump).dest.(first.reg)

}0; endcase
RI 73i £ 3Q/fmeS’ R;*2/twice’ R4*4> R5.14/twice, R5.15} R6.1# R6>2
p a ’w r J R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/3 times, R9.1
RA.1/5 times, RA.2/7 times (D 2 ^

case N2..Abstraction:
{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare (domain, of (first, par) , first.par, pKnode)
trans.E(p2“node).cont.(exit.code, false.jump).dest.(first.reg)
reset(old.env) 5'

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

trans.jump.to(continue, jump); endcase
by Rl.l, R1.2, R3.2/3 times, RA.l, RA.A, R5.3, R5.8, R5.9, R5.10 R5 13
R6. R6 10, R6.ll, R7.1, R7.2, R8.1, R8.2/twlce, rA.1/3 ii.es
EA'2/5 tlmeS (D.2.30)

- 222 -

_________________________Snapshot D.2 (continued)__________________________
case Nl..Routine:

{ let ntry.domG = forward(D..G)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domG, node)
{ let old.env = this.env
declare(D..COD, exit.code, RET)
trans.C(pl"node).cont.(exit.code, false.jump)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..G, ntry.domG).dest.(reg)

}
trans.jump.to(continue, jump); endcase
by Rl.l, R3.2/3 times, R4.1, R4.6, R5.3, R5.10, R6.1, R6.10, R6.ll
R7.1, R7.2, R8.1, R8.2/twice, RA.l/twice, RA.2/6 times (D.2.31)

case N2..Routine:
{ let ntry.domP = forward(D..P)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domP, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, pl"node, D..COD, exit.code,

RET)
trans.C(p2"node).cont.(exit.code, false.jump)
reset(old.env)

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..P, ntry.domP).dest.(reg)

}
trans.jump.to(continue, jump); endcase
by Rl.l, R1.2, R3.2/3 times, R4.1, R4.6, R5.3, R5.8, R5.9, R5.10, R6.1
R6.10, R6.ll, R7.1, R7.2, R8.1, R8.2/twice, RA.1/3 times, RA.2/6 times

(D.2.32)

case Nl..Valof:
{ let old.env = this.env
declare(D..COD, continue, RES)
trans. C(pi'‘node) .cont. (Wrong, true. jump)
reset(old.env)

}; endcase
by Rl.l, R3.2/twice, R4.4, R4.6, R6.10, R7.1, R7.2, R8.2, RA.l/twice
RA.2/twice (D.2.33)

- 223 -

---------------------------- Snapshot D.2 (continued-)
case N3..RecAbstract ion:

{ let ntry.domF = forward(D..F)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env
declare(domain.of(first.par), first.par, P2~node, D..F, ntry.domF,

pi node)
trans.E(p3“node).cont.(exit.code, false.jump).dest.(first.reg)
reset(old.env) 6

}
trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

trans.jump.to(continue, jump); endcase
RS R3*2/4 tim0S’ R4,1’ R4‘4’ R5‘3’ R5*8’ R5'9» R5-10
r a 'w /’ f R6-5»/R6*10* R6.ll, R7.1, R7.2, R8.1, R8.2/twiceRA.1/4 times, RA.2/6 times 0 0/.(.D.2.34)

case N2..RecRoutine:
{ let ntry.domG = forward(D..G)
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domG, node)
{ let old •env — this.env
declare(D..COD, exit.code, RET, D..G, ntry.domG, pKnode)
trans.C(p2~node).cont.(exit.code, false, -jump)
reset(old.env)

}
trans.exit(exit.code, node)
fix.he re(skip.code)
trans.1oad(D..G, nt ry.domG).dest•(reg)

trans.jump.to(continue, jump); endcase

M n ' V I ’V ? ' 2™ R4‘6' R5-3- R5'10’ R6-1> R6-5.K6.ll, R7.1, R7.2, R8.1, R8.2/twice, RA.1/3 times, RA.2/7 times (D.2.35)

APPENDIX E

GEDANKEN

Snapshot E.l: GEDANKEN. Original Specification
Syntactic Categories
b:Bse.
n:Nml.

c:Chr.
q:Quo.
i:Ide.
e:Exp.
f:Abs.
p:Par.
s:Prog.
r:RecDec.
1:LabDec.

bases
nuraerals
characters
quotations
identifiers
expressions
abstractions
parameters
programs
recursive dec.
label dec.

Syntax

P
f

r
1

= n
= i

c

t Pl’ = Lam p.e
= b |
Case
el*®2 := 1 Isr

I q

I f

\ of t p
f

,p„ | EmptyPar |

ele2

(P:)

If e. Then e."1
29 * * *Is ei;e2 1’

1*
• • • >e2
>r 2»11»

Else
I
e„ | e And e |
EmptyExp | e =e„
• ;i2 I (e p 1

‘l °r '2 I ei;-e2

:= l :e

Semantic Domains
T=[{ TRUE } + { FALSE K

n:N.
H.
Q-
0=[T + N + H + Q].
At=[{ U
GAt.

+ N + H + Q + At]
> K

} + { U1 } + GAt].

> C].
B= [T

f:F=[E
c:C=[S > A].
L.
Im=[F x F].
Rf=[L + Im].

+ F + C + Rf] .
Erro } + B + [0 x A]].
» C].
> C].

e:E=[B
A= t {

k:K=[E
x :X=[U

D=E.
p:U=[Ide > D].
V=E.
S=[[L > [V x T]] x [At > T] x H* x 0*].

truth values
integers
characters
quotations
output values
atoms
generated atoms
basic values
functions
label values
locations
implicit references
references
expressible values
answers
expression cont.
parameter cont.
denotable values
environments
storable values
stores

/
- 225 -

Semantic Primitives (undefined)
Ccoerce:[E > K > C].
Cerror:C.
NCequal:[F > K > C].
NCset:[F » K » C].
Select:[C* > N » C » C] .
Seq:[E* > F] .
B:[Bse > B].
M: [Prog » H* > A].

Semantic Domains of 'Interest'
ENV=U. "
REG=E.
TEM=F.

Snapshot E.1 (continued)

Semantic Equations
E:[Exp » U > K » C].

E[b]pk=
k(B[b]).

E[i]pk=
Mp[i]}.

E[f]pk=
k{F[f]p}.

E[e,e2]pk=
Rle1]p{>e.e?F>E[e2]p{>e'.{e|F}e'k},Cerror}.

E[If e, Then e„ Else e„]pk=
Rle^pOe.eTT^e |T>E[e2]pk,E[e3]pk,Cerror}.

E[e And e2Jpk=
RLe1]p{>e.e?T>e|T>R[e2]pk,kFALSE,Cerror}.

E[e Or e]pk=
Rre1]p{5e.e?T>e|T>kTRUE,R[e2]pk>Cerror}.

E[Case e Of e , ... ,e_]pk=
Rte^p
{>e.e?N>Select<E[e]pk,...,E[e]pk>(e|N)Cerror

e?At>(e|At)=Ll?k 1,(e|At)=til>k(#[...]),Cerror.Cerror}.
E[e., ... ,e2]pk=
Ete^pi^e. .. .E[e2]p{>e' .k{Seq<e,... ,e'»}}.

E[EmptyExp]pk=
k{Seq<>}.

E[e,=e„]pk=
Rle1JP{^e.R[e2]p{>e'.NCequal{Seq<e,e'>}k}}.

envi ronments
registered values
templates

(E.1.1)

(E.1.2)

(E.1.3)

(E.1.4)

(E.1.5)

(E.1.6)

(E.1.7)

(E.1.8)

(E.1.9)

(E.1.10)

(E.1.11)

(E.1.12)

- 226 -

Snapshot E.l (continued)
E[£ :=e]pk=
Ete^]p{^e.R[e2]p{^e'.NCset{Seq<e,e'>}k}}. (E.l.13)

E [e,J^o]pk—
E[e1Tp{>e.E[e2]pk}. (E.l.14)

E[p Is e.;e]pk=
E[e1]p{>e.P[p]pe{>p'.E[e2]p'k}}. (E.l.15)

E [r,, ... ;r_;l.; ... ;1^]pk—
Fix(><f',.:.,r',c',..:,c">.

«F(2t[r])p',...,F(2i[r J)p',E(2*[1])p'{>e.c"} ,...,
E(2*[li])p'k 2 1
>

Where p'=p[f'/It[r]]... [f'7l*[r]] [c'/Ml,]]...[c''/lf[l]]))t2tl
(E.l.16)

E[(e)]pk-
E[e x]pk. (E.l.17)

P:[Par » U > E » X > C] . (E.l.18)

P[i]pex=
x(p[e/[i]]). (E.l.19)

PtPj. ••• »P2]Pex=
Ccoerce e
{>e .e?F>U[p.]p{e | F} l{>p'. .. .U[p„]p' {e | F} (//[p., ... ,p„])x} ,Cerror}

(E.l.20)

P[EmptyPar]pex=
xp. (E.l.21)

I* [(P 2)]pex=
P[p1Jpex. (E.1.22)

R: [Exp > U > K > C]. (E.l.23)

R[e]pk=
E[e]p{>e.Ccoerce ek}. (E.1.24)

F:[Abs > U > F]. (E.1.25)

F[Lam p.e]p=
>ek.P[pjpe{>p'.E[e]p'k}. (E.1.26)

U:[Par > U > F » N » X » C] . (E.1.27)

U[p]pfnx=
fn{>e.P[p]pex}. (E.1.28)

- 227 -

-=— -------- ------------Snapshot E.2: GEDANKKN. BCPL
let trans.E(node).cont.(continue, jump).dest.(re«) be “------
switchon type“node into
/ T N R1,1> R3,1> R4*3’ R5-12, R6.10, R7.5, R8.1, RA.L (E.2.I)
{ case T..Numeral: case T..Character: case T..Quotation:

trans' JuraP • to(continue , jump); endcase
by Rl.l, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.l/twice, RA.2

(E.2.2)
case T..Ident:

look U,,<„o,,e, dMt.<reg); trans.jump.to(contlnue, jump); endcase
by Rl.l, R3.2/twice, R4.1, R5.3, R6.1, 86.10, R7.4, R8.1, RA.l/twice

(E.2.3)
case N2..Lambda:
bvaRl'l<n^ ' w f St'<r^)| trans*jumP*co(continue, jump); endcase
RA.2 R3-2't"1“ . R4-1. R5-3, R6.1, R6.10, R7.6, R8.1, RA.l/twice

(E.2.4)
case N2..FunctionDesignator:

{0 let continue2 = forward(D..COD)
trans.R(prnode).cont.(continue2 , false.jump).dest.(reg)
fix.here(continue2)
trans.skip.if.in(reg, D..F)
trans.jump.to(Cerror, true.jump)
{ let continuel = forward(D..COD)
test weight“p2“node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.E(p2“node).cont.(continuel, false.jump).dest.(ree)
flx.here(continuel) s
trans.call(dmp.loc, reg).cont.(continue, jump

)-dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.E(p2~node).cont.(continuel, false.jump).dest.(nxt)
flx.here(continue 1)

} trans*call(reg, nxt).cont.(continue, jump).dest.(first.reg)
}0; endcase
by Rl.l, R3.2/3 times, R4.2/twice, R4.4, R5.14/twice R5 15 ra 1 ra ?
R6. R6.7, R6 9/twice, R6.10, R7.6/twice, *8.1,
RA.1/5 times, RA.2/6 times ’ *(E.2.5)

- 228 -

_________________________ Snapshot E.2 (continued)__________________
case N3..Conditional:

{0 let continuel = forward(D..COD)
trans.R(pl^node).cont.(continue 1, false.jump).dest.(reg)
fix.here(continuel)
trans.skip.if.in(reg, D..T)
trans.jump.to(Cerror, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.E(p2~node).cont.(continue, true.jump).dest.(reg)
fix.he re(fcond.code)
trans.E(p3"'node) .cont. (continue, jump) .dest. (reg)

}0; endcase
by Rl.l, R3.2/3 times, R4.2, R4.4/twice, R5.13/twice, R5.14, R6.1
R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice
R8.2/twice, RA.1/4 times, RA.2/6 times (E.2.6)

case N2..And:
{0 let continuel = forward(D..COD)

trans.R(pl~node).cont.(continue 1, false.jump).dest.(reg)
fix.here(continuel)
trans.skip.if.in(reg, D..T)
trans.jump.to(Cerror, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.R(p2~node).cont.(continue, true.jump).dest.(reg)
fix.here(fcond.code)
trans.load(D..T, FALSE).dest.(reg)
trans.jump.to(continue, jump)

}0; endcase
by Rl.l, R3.2/3 times, R4.1, R4.2, R4.4, R5.3, R5.7, R5.13, R5.14
R6.1/twice, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/twice, R8.1/twice
R8.2/twice, RA.1/3 times, RA.2/6 times (E.2.7)

case N2..Or:
{0 let continuel = forward(D..COD)

trans.R(pl^node).cont.(continuel, false.jump).dest.(reg)
fix.here(continue1)
trans.skip.if.in(reg, D..T)
trans.jump.to(Cerror, true.jump)
{ let fcond.code = forward(D..COD)
trans.jump.if.false(reg, fcond.code)
trans.load(D..T, TRUE).dest.(reg)
trans.jump.to(continue, true.jump)
fix.here(fcond.code)
trans.R(p2~node).cont.(continue, jump).dest.(reg)

}0; endcase
by Rl.l, R3.2/3 times, R4.1, R4.2, R4.4, R5.3, R5.7, R5.13, R5.14
R6.1/twice, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/twice, R8.1/twice
R8.2/twice, RA.1/3 times, RA.2/6 times (E.2.8)

- 229 -

{ let node,vec2 = open.node(p2~node)
{0 let continuel = forward(D..COD)

trans.R(prnode).cont.(continuel, false, jump) .dest.(reg) fix .here (continue 1) ‘-•v^g,
{ let fcond.code = forward(D..COD)

trans.skip.if,in(reg, D..N)
trans.jump.to(fcond.code, true.jump)
{ let code.vec2 = forward.vec(inode.vec2, D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
for inx=l to !node.vec2
do { fix.here(code.vec2 !inx)

trans.E(node.vec2!inx).cont.(continue, true.jump
 ̂).dest.(reg)

fix.here(skip.code)
Select(code.vec2, reg).cont.(Cerror, true.jump)
freevec(code.vec2)

fix.he re(fcond.code)
trans.skip.if.in(reg, D..At)
trans.jump.to(Cerror, true.jump)
{ let fcond.code = forward(D..COD)

trans.skip.if(i.skipEQ, reg, LI)
trans.jump.to(fcond.code, true.jump)
trans.load(D..N, make.num(1)).dest.(reg)
trans.jump.to(continue, true.jump)
fix.here(fcond.code)
trans.skip.if(i.skipEQ, reg, Ul)
trans.jump.to(Cerror, true.jump)
trans.load(D..N, make.num(!node,vec2)).dest.(ree)
trans.jump.to(continue, jump)

freevec(node.vec2)
}; endcase

147*6/3 U BeS-
KAiz/U tZl’s, R8'2/7 R8’5> (E.2.

— „T„-- ^__ ___________ ___Snapshot E.2 (continued)case N 2 . . C a s e : ----------- — — — ____ '__ ___________________

- 230 -

________________________ Snapshot E.2 (continued)
case NX..Sequence:

{ let node.vec = open.node(node)
{ let old.env = this.env
let old.off = this.off
for inx=l to Inode.vec-1
do { { let continuel = forward(D..COD)

trans.E(node.vec!inx).cont.(continuel, false.jump
).dest.(reg)

fix.he re(continuel)
}
trans.dump(reg)

}
unless Inode.vec=0
do { let continue2 = forward(D..COD)

trans.E(node.vec!Inode.vec).cont.(continue2, false.jump
).dest.(reg)

f ix.here(continue2)
trans.dump(reg)
Seq(old.off).dest.(reg)
trans.jump.to(continue, jump)

}
reset(old.env)

}
freevec(node.vec)

}; endcase
by Rl.l, R3.2/4 times, R3.7, R4.1, R4.2, R4.6, R4.7, R5.14, R5.16, R6.1
R6.9, R6.10, R6.18, R7.6/twice, R8.1, R8.2/twice, RA.l, RA.2/4 times

(E.2.10)

case NO..EmptyExp:
Seq(reg); trans.jump.to(continue, jump); endcase

by Rl.l, R3.2/twice, R4.1, R5.13, R6.1, R6.10, R8.1, RA.l (E.2.11)

- 231 -

case N2..Equal; Snapshot E.2 (continued)

{0 let continue2 = forward(D..COD)
trans.R(prnode).cont. (continue2 , false, jump) .dest. (reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
test weight p2~node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans ,R(p2“node) .cont. (continue 1, false. jump) .dest. (reg)
fi x.here(continue 1)
NCequal(Seq(dmp.loc).dest.(reg)).cont.(continue, jump

)-dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.R(p2“node).cont.(continuel, false.jump).dest.(nxt)
rix.here(continuel)
NCequal(Seq(reg).dest.(nxt)).cont.(continue, jump

).dest.(first.reg)
}

}0; endcase
Rft frV1^ / ? 74 timeo’ R4*2/twice> R4-4> R5.14/twice, R5.15, R6.9/twice

R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/5 times, RA.2/5 times
(E.2.12)

case N2..Assignment:
{0 let continue2 = forward(D..COD)

trans.E(pl“node).cont.(continue2, false.jump).dest.(reg)
fix.here(continue2)
{ let continuel = forward(D..COD)
test weight“p2''node=max.reg
then { let old.env = this.env

let dmp.loc = trans.dump(reg)
trans.R(p2“node).cont.(continuel, false.jump).dest.(reg)
flx.here(continuel)
NCset(Seq(dmp.loc).dest.(reg)).cont.(continue, jump

).dest.(first.reg)
reset(old.env)

}
or { let nxt = next(reg)

trans.R(p2“node).cont.(continuel, false.jump).dest.(nxt)
fix.here(continue 1)
NCset(Seq(reg).dest.(nxt)).cont.(continue, jump

).dest.(first.reg)

}0; endcase
by Rl.l, R3.2/4 times, R4.2/twice, R4.4, R5.14/twirp rs is jja o /<- •
R6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/5 times,’ra!2/5’times06

(E.2.13)

- 232 -

________________________ Snapshot E.2 (continued)__________________________
case N2..Compound:

{ let continuel = forward(D..COD)
trans.E(pl~node).cont.(continue 1, false.jump).dest.(reg)
fix.here(continuel)
t rans.E(p2~node) .cont. (continue, jump) .dest. (reg)

}; endcase
by Rl.l, R3.2/twice, R4.2, R4.4, R5.13, R5.14, R6.9, R6.10, R7.6/twice
R8.1, R8.2, RA.1/3 times, RA.2/3 times (E.2.14)

case N3..Dec:
{0 let continue2 = forward(D..COD)

trans.E(p2~node).cont.(continue2, false.jump).dest.(reg)
fix.here(continue2)
{ let old.env = this.env
let continuel = forward(D..COD)
trans.P(pl~node, reg).cont.(continue 1, false.jump)
fix.here(continuel)
trans.E(p3~node).cont.(continue, jump).dest.(reg)
reset(old.env)

}0; endcase
by Rl.l, R3.2/3 times, R4.2/twice, R4.4, R5.13, R5.14, R6.9/twice
R6.10, R7.6/3 times, R7.8, R8.1, R8.2/twice, RA.1/4 times, RA.2/5 times

(E.2.15)

- 233 -

}

{ let node.vecl = open.node(pl~node)
let node.vec2 = open.node(p2/'node)
{ let old.env = this.env
let code.vecl = forward.vec(!node.vecl, D..F)
let code.vec2 = forward.vec(Inode.vec2, D..COD)
for inx=l to Inode.vecl
do declare(D. .COD, code.vecl I inx, pKnode.vecl I inx)
for inx-1 to Inode.vec2
do declare(D..COD, code.vec2!inx, pl'node.vec2Iinx)
for inx—1 to Inode.vecl
do { trans.F(p2“node.veclIinx).dest.(reg)

fix.with(code.veclIinx, reg)

for inx=l to Inode.vec2-l
do { fix.here(code.vec2Iinx)

trans.E(p2~node.vec2Iinx).cont.(code.vec2!(inx+1), true.jump
).dest.(reg) J K

unless Inode.vec2=0
do { fix.here(code.vec2!Inode.vec2)

trans.E(p2"node.vec2IInode.vec2).cont.(continue, jump
).dest.(reg)

freevec(code.vec2)
freevec(code.vecl)
reset(old.env)

}
freevec(node.vec2)
freevec(node.vecl)

}; endcase

R5 13’1R5R11A3\ r i n /6p!;i? r ’ f3'3, R3-7/twice* R4-2, R4.4, R5.3/twice R5.13, R5.14, R6.10, R6.13, R6.16, R6.17/twice, R7.2, R7.3
Ia .6/5 times’ R7-7/twice> 88.2, R8.5/3 times, RA.l, RA.2/7 times

(E.2.16)
case Nl..BraExp:

trans.E(prnode) .cont. (continue, jump) .dest. (reg) ; endcase
y Rl.l, R3.2, R4.4, R5.13, R6.10, R7.6, R8.1, RA.l/twice, RA.2 (E.2.17)

----- ------------------ Snapshot E.2 (continued)
case N2.. Block: ------------ --------- — ------- --------- --

let trans.P(node, reg).cont.(continue, jump) be switchon type~node into

{ case l/.Ident’: R5'12’ R5’18’ R6,i°’ R?'5’ R8*1’ 1 (E-2‘18>
endcase(d°raain*°f(reg)« re§’ node)j trans.jump.to(continue, jump)
by Rl.l, R3.2/twice, R4.1, R5.18, R6.1, R6.10, R7.2, R8.1, RA.l/twice

(E.2.19)

- 234 -

_______ __________________ Snapshot E.2 (continued)________
case NX..SeqPar: ~~ — — — ---

{ let node.vec = open.node(node)
{0 let continue2 = forward(D..COD)

Ccoerce(reg).cont.(continue2, false.jump).dest.(first.reg)
fix.here(continue2)
'trans.skip.if.in(first.reg, D..F)
trans.jump.to(Cerror, true.jump)
{ let dmp.loc = trans.dump(first.reg)
for inx=l to Inode.vec-1
do { { let continuel = forward(D..COD)

trans.U(node.vec!inx, first.reg, make.num(inx)
).cont.(continuel, false.jump)

fix.here(continuel)
}
trans.load(D..F, dmp.loc).dest.(first.reg)

unless Inode.vec=0
do trans.U(node.vec!Inode.vec, first.reg, make.num(size''node)

).cont.(continue, jump)
}0
f reevec(node.vec)

}; endcase
by Rl.l, R3.2/3 times, R3.7, R4.2, R4.4, R4.6, R4.7, R5.14, R5.15
R5.17, R5.18, R6.1, R6.2, R6.7, R6.9, R6.10, R6.18, R7.6/twice, R7.9
R7.ll, R8.1, R8.2/3 times, RA.l/twice, RA.2/6 times, RA.9, RA.10/twice

(E.2.20)
case NO..EmptyPar:

trans.jump.to(continue, jump); endcase
by Rl.l, R3.2, R4.1, R6.1, R6.10, R7.10, R8.1, RA.l (E.2.21)

case Nl..ParBra:
trans.P(pl"node, reg).cont.(continue, jump); endcase
by Rl.l, R3.2, R4.4, R5.18, R6.10, R7.6, R7.ll, R8.1, RA.l/twice, RA.2

} (E.2.22)

let trans.R(node).cont.(continue, jump).dest.(reg) be
by Rl.l, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.l (E.2.23)

{ let continuel = forward(D..COD)
trans.E(node).cont.(continuel, false.jump).dest.(reg)
fix.he re(continuel)
Ccoerce(reg).cont.(continue, jump).dest.(first.reg)

} by Rl.l, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1
R8.2, RA.l/twice, RA.2/twice (E.2.24)

- 235 -

I7t traM .nnode).dest.(reffiLSh0t b ^ i T ^ T ^ , ,______
{ let ntry.domF = forward(D..F) ’ * ’ * ’ RA*1
let exit.code = forward(D..COD)
let skip.code = forward(D..COD)
trans.jump.to(skip.code, true.jump)
trans.entry(ntry.domF, node)
{ let old.env = this.env
let continue = forward(D..COD)

f l T h ; X S e) irSt'Par,-COnt-(COntl"Ue'
} «r™ ; o L P^ ;) e)-CO”t-<eXlt-C<,d'!' â^s€*Jump).dest.(first .reg)

trans.exit(exit.code, node)
fix.here(skip.code)
trans.load(D..F, ntry.domF).dest.(reg)

(E . 2 . 26)

l6t tr“ f;US 0fe »1,?»1re8) -cont.(cont1nue# jump) be

(1st continue)’- for»ard(D.’.OTD)2’ R5'‘8’ R<>'10' R?'5' R 8 a ' 8A'1 <E'2'27)
ftLa" ; r : J c o ^ i S ! ; CO°t-<CO"tlnUe1’ ^alse*jump).dest.(first.reg)
trans.PUode first.reg) .cont.(continue, jump)

R7.6 , ‘ r7 .11 i2R 8 ^ ? eR 8 f 2 | e e ^ *^

}

}

i

