

A Correspondence Between

Denotational Semantics

and

Code Generation

Martin R. Raskovsky

A Correspondence Between

Denotational Semantics

and

Code Generation

Martin R. Raskovsky

Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Computing Science University of Essex August 8th 1982

To: my father - in memoriam.

my mother, Daniel,

my sisters and brothers.

Abstract

- II -

We describe a method for the systematic derivation, or automatic generation - from the formal denotational semantic specification - of an efficient compiler's code generation phase, producing efficient code for real machines. The method has been successfully implemented and tested with languages as complex as GEDANKEN!

The method has been used to implement a compiler-compiler which inputs the semantic specification of a programming language written in a standard denotational form, analyses it in the light of its semantic contents, decides upon certain predecided general implementation issues and outputs a program written in the systems programming language BCPL. This program constitutes the type checking and code generation phases of a compiler for the given language. Its structure and operation is in effect essentially the same that we would have produced by hand. The only hand coding is the interface for the particular target machine, required for both the primitive functions of the original specification and those introduced by the compiler-compiler. For the latter, our system provides a library of routines to generate code for the DEC-10 system. So that in all the examples we tried, we only had to hand code the former. The parser is separately generated with an LLI system which also generates BCPL procedures.

Acknowledgments

The original idea, on which this thesis is based, was implicitly suggested by the lectures given by: M.Brady, R.Bornat, P.Hayes and R.Turner, who combined the Scott-Strachey approach to programming language theory with programming language implementation techniques.

R.Turner, my supervisor, gave the necessary insight into denotational semantics, without which this thesis would not have been possible.

P.Collier contributed, during the first period, congruence proofs between the standard and implementation versions of denotational semantics. Also, his invaluable comments on early drafts of this dissertation are appreciated.

It was a great pleasure working with M.Henson, his clarity of thought, encouraging support throughout the years of research and final proof reading have been of immense value.

B.Sufrin suggested a production rule formalism, to describe abstractly the implementation; changing completely the mood of this text.

The insight into the DEC-10 operating system, given by N.Wilson, was of great assistance during the implementation stages.

Contents

l In	troduc	tion	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	
1 1	Analog	v																											2	
1 2	Anatog	ntrib	utio																										9	
1 3	The Fo	rm of	thi	e T	hes	is																							11	
1.5	me ro	I III OI	LIII	5 11	nee			•							1															
2 Pr	oducti	on Sy	stem				•	•	•		•	•	•	•	•				•		•	•	•	•	•	•	•	•	13	
																													13	
2.1	Metala	nguag	es	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		13	
	2.1.1	Sourc	е.	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14	
	2.1.2	Targe	t.	• •	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15	
2.2	Conver	sions	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15	
	2.2.1	Rules	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15	
	2.2.2	Condi	tion	s.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17	
2.3	Transf	ormat	ions		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10	
2.4	An Exa	.mple			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10	
	2.4.1	Synta	ctic	Tr	ans	sfo	orn	nat	:10	ons	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20	
	2.4.2	Semar	itic	Tra	nst	Eor	cma	ati	lor	ns	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20	
		Desti	nati	on	Ana	aly	ysi	is		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20	
		Conti	nuat	ion	A	nal	Lys	sis	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21	
		Envir	onme	nt	Ana	aly	ysi	is	•			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23	
	2.4.3	Optin	nisin	g T	rai	nsf	Eoi	rma	at	io	ıs	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25	
	2.4.4	BCPL											•				•	•	•	•	•	•	•		•	•	•	•	25	
																													-	
3 St	tate				•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27	
																													00	
3.1	Normal	lisati	lon		•				•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29	
3.2	State	Analy	sis					•	•	•		•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	31	
	3.2.1	No Co	pies	of	t	he	S	tai	te	A	11	ow	ed				•	•		•	•	•	•	•	•	•	•	•	32	
	3.2.2	First	Met	hod	-	E	111	min	na	ti	on							•	•	•		•	•	•	•	•	•	•	33	
		Ident	city																	•				•	•	•	•	•	34	
		Abst	racti	on	an	d	Ap	p1	ic	at	io	n									•	•	•	•	•	•	•	•	34	
		Cond	ition	al				•														•	•			•	•	•	35	
		Strie	ct .																		•	•			•	•	•	•	36	
	3.2.3	Seco	nd Me	the	d	-	St	ru	ct	ur	in	g										•	•	•		•	•	•	37	
		Defi	nitic	ons								•									•		•			•		•	37	
		Ideni	tity																								. •		40	
		Reve	rsed	Con	nno	si	ti	on	f	or	С	om	ma	nd	s														40	
		Comp	ositi	ion	fo	r	Ex	pr	es	si	on	S																	41	
2 2	Sunta	etic '	Franc	efor	ma	ti	on	S																					43	
2.2	2 2 1	Drock	aduri	ing	. mea																								43	
	2.2.1	Appl	ind (leci	.rr	on			f	Ab	st	ra	ct	io	ns														44	
2 /	5.5.4	App1	ranaf	For	nat	in	ne	v	-																				46	ļ
3.4	Seman	Da-t	incti	ion	A-	10	110	·	•	•	•		1																47	
	3.4.1	Dest	Inati	LOII	AI	al	y5	15	•	•	•	•	•	•	•	•													51	
	2 / 2	Orde	r or	API	11	ca	1	on	•	•	•	•	•	•	•	•	•	•	•										52	ĺ
	3.4.2	Cont	inuat	-101	I A	fia	1y	51	5	•	•	•	•	•	•	•	•	•											52	1
		vari	ables	5 as	S	La	ce	me	110	5	•	•	•	•	•	•	•	•	•	•		•	1						53	
		Cond	10101	nals	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					55	
		Fix										•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			í

3.1 3.6 3.7 3.8	3.5 Side effects	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · ·	57 59 59 60 60 61 63
4 H	Environment	•••	• •	•	67
4.1 4.2 4.3	 1 Syntactic Transformations 2 Destination Analysis 4.2.1 Template Declaration 4.2.2 Template Invocation 3 Continuation Analysis 4.3.1 Template Declaration 	· · ·	•		70 71 71 73 74
	4.3.2 Template Invocation 4.3.3 Type Checking	••• •••	•	•	74 76 77
4.4 4.5	4 Environment Analysis . 5 Optimising Transformations . 4.5.1 Dumping . 4.5.2 Multiple Declarations .	• • • • • •	•••••••••••••••••••••••••••••••••••••••	•	80 82 85 85 87
4.6	.6 BCPL	•••	:	•	87 88
5 C	Continuations	•••	•	•	96
5.1	.1 Semantic Transformations	•••	•	•	98
	Expression Continuations	•••	:	•	98
	Applications	•••		•	100
	Variables as parameters	•••	•	•	101
	<pre>5.1.2 Destination Analysis</pre>	· ·	•	• 1	102 102 104 104
5.2	2 Optimising Continuations	•••	:	• 1	106 106 106
				1	
5.0	5.2.2 False Jumps	• •	:	. 1	108
5.3	<pre>5.2.2 False Jumps 5.2.3 Conditional Jumps 3 Ellipsis 5.3.1 Syntactic Transformations 5.3.2 Continue for the second s</pre>	•••	••••••	. 1 . 1 . 1	108 108 111 115
5.3	<pre>5.2.2 False Jumps 5.2.3 Conditional Jumps 3 Ellipsis 5.3.1 Syntactic Transformations 5.3.2 Continuation Analysis 5.3.3 Environment Analysis 5.3.4 Optimising Continuations</pre>	• •	•	. 1 . 1 . 1 . 1	108 108 111 115 113 120

5.4 Further Developments: GEDANKEN • . . • 5.4.1 Splitting Continuations • • . . . • • • . 5.4.2 Destination Analysis

. •

. •

.

. 125

. 126

											·															10.04	Constant of the
		Iter	ativ	re Cr	eat	ion											•	•	•		•15	•	.2	• 8	•	•	126
	1. 5. 16.1	Iter	ativ	re Co	nse	rvat	ior	1.																•	•		126
	1 1 1	Para	mete	rs .																							127
1	0.8.8.3	Dvad	ic 0	Inera	tio	ns	12																				127
	5 / 3	Cont	inua	tion	An	alve	is						1.00		19	1		. 3									127
	5.4.5	Cond	itic	0.001	Chi	n	1.5								3	-		-	10.03		127.4		-				127
		Long	atio	mar	SKI	P •	•				-	•	•				2						1213	20			129
		Iter	atic			1			•	1	•				•		•		1		1		114	1983	1.6		130
	5.4.4	Envi	ronn	ient	Ana	TÀRI	S	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			130
1.2		Decl	arat	lon		• •	•	•			•	•	•	•	•	•	•	•		1	119	nor	677	CLV.	252	1	130
		Elim	inat	ion	10.85	• •		• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		131
	5.4.5	BCPL	• •	•••		1. 1.	•	• •	•	•	•	•	sti	O.E.	3.50		•	•	1	•	11.	•		N			131
6 T I	ne Lami	oda C	alcu	ilus	•	÷÷	•	• •	•	•	•	•	• i	•	•	10491 1.541	14	-14.	•			•	•••	•	•	•	133
6.1	Direct	: Sem	anti	ics .												•	•		•	•	•	•	•	•	•	•	133
1.12	6.1.1	Synt	acti	ic Tr	ans	for	nat	ion	s											•				•	•	•	133
	1.20	Non-	Stri	ict /	And	Thu	nk																•	•			133
	6.1.2	Dest	inat	tion	Ana	lvs:	is																				137
	6 1 3	Cont	inus	ation	An	alv	sis																				138
	6 1 /	Onti	mia	ing T	Fran	efor	rma	tic	ne	1		1	-	1	10		14	- 01			-						140
	0.1.4	Opti	mis.	Ling J	tian	510	Lina	LIC	115		1	1.	1	19	10	2.00	1	1	0	3.07	1996	in Q	2.27	(6)			144
6.2	Contin	nuati	on	semai	Ana	5 .		• •	1	•	•	•	0.0	1	10.50	10	1	0.5		18	1.6			1.01			145
	6.2.1	Dest	inat	LION	Ana	Tys.	LS .	• •	•	•	•	•	•	•	•		•	•	2.0	14	(U.R.)	СĒ.,	1	1.0	60		145
	6.2.2	Cont	inua	ation	n An	aly	S1S		•	•	•				•	1		•	10	•	1.	•	•		10		146
6.3	Compa	rison	•	• • •	•••	• •	•	• •	• •	•	•	•	•	•	•	•	•	•	10	13	•		•	•		•	140
7 F	rom Sta	andar	d to	o Imj	plem	ent	ati	on	DS		•	•	•	•	•		•		•	•		•	•	•	•	•	152
7.1	Boole	an Ex	pre	ssio	ns															•				•			153
7.2	Arith	metic	Ex	pres	sion	s.																					157
7 3	Marki	no lo	cat	ions	in	use																					162
7 1	Decla	rotic	n a	nd T	nvoc	ati	on	Env	vir	on	me	nt					•										164
/ • 4	7 / 1	(T)	Toc	al R	indi	no				-			164														167
	7 . 4 . 1	(1)	EUC	ar D		lind	ing			1				0	2		1	101			5.6	0					168
	1.4.2	(11,	EX I	tern	LIC Y	lian	ing	-									1			1	19.49	14					168
	1.4.3	(11)	L) L	ocar	WOI	. KSP	ace			+	1.		+ 1				an a	1.5		10	197	16		2		-	170
	7.4.4	(10.) In	itia	1 ar	ia R	etu	rn	u	mL	TH	ua	LT	on		1		15.5	1	19.3	10	1					172
	here a	A Po	oste	rior	i Ev	7a Lu	ati	on		•	. •	•	0.8	1.5	•		S PER	1	1.	100	sice	13	•	1			172
8 C	onclus	ion		• •	• •		•	•	• •			•		•	•		•	•		•	•	•	10.0		ł	•	173
																1											
Ref	erence	s.	• •	ej-ui-	•	• •	• •	•	•	•	•	•	•	an	-	1050	•	•	•	•	10	•	ind.	- 30	0.4	·Mic	1//
Ann	ondiv	۵. T	he T	mple	ment	tati	on																5.		2		181
APF	Chuix							-				*												448			101
A.1	Early	His	tory													•	•	•	•		•		•			•	181
A . 7	Pilot	Pro	iect	die al																•	•						182
A	The T	SL S	vste	em .																				•			183
A.2	+ Concr	ete	Synt	ax c	of W	FFs							-	1		•	•	•	•	•		•	•	•		•	187
														-													
																						1				.0	and the second

Appendix B: Transformation Rules		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	189
B.1 Normalisation																				189
B.2 State Analysis																				189
B.3 Syntactic Transformations .																				190
B.4 Splitting Continuations		•																		191
B.5 Destination Analysis																				191
B.6 Continuation Analysis																				193
B.7 Environment Analysis																				197
B.8 Optimising Continuations																		0		108
B.9 Optimising Transformations .						-											•	•	•	100
B.10 BCPL							1					•	•	•	•	•	•	•	•	200
B.11 Cross Reference					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	200
Champer instant Manager		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	201
Appendix C: Operators	•	•	•					•	•			•	•							205
C.1 Source																				1.1
C.2 Target	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		205
0.2 larget	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•	•	•		208
Appendix D: Stoy's Final Example					1	-	-													200
<pre>i ListieuA, nution . collectiicea, Lacier . collectiicea, Lacier</pre>					-					•	•		•	•	•			•	•	209
Appendix E: GEDANKEN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	224

						CLARGE AND
	List of	Sn	ap	sh	ot	S
	and the state of t					A STATE OF CONTRACT OF CASE OF
2.1	The Lambda Calculus					Original Specification 18
2.2						Syntactic Transformations 20
2.3						Destination Analysis 21
2.4						Continuation Analysis 22
2.5						Environment Analysis 24
2.6						BCPL 26
3.1	Algebraic Language of Flow Diagra	ms				Original Specification 28
3.2			•			Normalisation 30
3.3		•				State Analysis 36
3.4	Flow Diagrams State-Structured .	•	•	•		Original Specification 39
3.5		•		•	•	State Analysis 43
3.6		•	•	•	•	Syntactic Transformations 45
3.7		•	•	•	•	Destination Analysis 52
3.8		•	•	•	•	Continuation Analysis
3.9	Flow Diagrams with Side Effects	•	•	٠	•	Original Specification 57
3.10	The Store State-Unstructured	•	•	•	•	Original Specification 60
3.11		•	•	•	•	Destination Analysis • • • 61
3.12	The Store State-Structured	•	•	•	•	Original Specification • • 62
3.13		•	•	•	•	Destination Analysis • • • 02
3.14	Flow Diagrams State-Unstructured	•	•	•	•	BCPL
4.1	Flow Diagrams with Environments	•	•	•	•	Original Specification 07
4.2	Pre-declarations	•	•	•	•	Original Specification • • 09
4.3	Flow Diagrams with Environments	•	•	•	•	Destination Analysis • • • 75
4.4		•	•	•	•	Continuation Analysis 01
4.5		•	•	•	•	Environment Analysis • • • 00
4.6	Compile-Time Type Checking	•	•	•	•	
4.7	Flow Diagrams with Environments	•	•	•	•	Original Specification 96
5.1	Flow Diagrams with Jumps	•	•	•	•	Suptratio Transformations 99
5.2		•	•	•	•	Splitting Continuations 101
5.3		•	•	•	٠	Destination Analysis 103
5.4		•	•	•	•	PCDI 109
5.5		•	•	•	•	Original Specification 112
5.6	Blocks: two different styles .	•	•	•	•	Original Specification . 113
5.1	Flow Diagrams with Ellipsis	•	•	•	•	Syntactic Transformations 117
5.0			•	•	•	BCPI 121
5.10	CEDANKEN. Sequences	•	•	•	•	Original Specification 123
5.10	GEDANKEN. Sequences	1		•		Syntactic Transformations 124
5 12	CEDANKEN: Soquences (in effect)	1				Syntactic Transformations 124
5 12	GEDANKEN: Sequences (In effect)	•	1		1	Splitting Continuations , 125
5 1/	GEDANKEN. Sequences	1	•	1	•	Destination Analysis 128
5 15	CEDANKEN. Sequence of Parameters	•	•	•	•	Continuation Analysis 129
5 16	outrainer, bequeice of farameters					Environment Analysis 131
6.1	The Lambda Calculus(Direct)					Original Specification 134
6.2	Ine Lamba Garcatab(offece)	-				Splitting Continuations . 137
6 3						BCPL A A A A A A A A A A A A A A A A A A A
6 4	The Lambda Calculus(Continuation)				Original Specification 143
6 5	Ine Dambad Odicutus (Concindation					Splitting Continuations . 145
6.6						BCPL A A A A A A A A A A A A A A A A A A A
7.1	Boolean Expressions(SDS)					Original Specification . 153

7.2	BCDI		1
7.3	Boolean Expressions(IDS)	•	154
7.4		•	155
7.5	Arithmetic Function (CDC)	•	156
7 6	Artimetic Expressions(SDS) Original Specification .		157
7.0	••••••••••••••••••••••••••••••••••••••		158
1.1	Arithmetic Expressions(IDS) Original Specification .		159
1.8	••••••••••••••••••••••••••••••••••••••		160
7.9	The Store with Locations(SDS)	•	161
7.10	••••••••••••••••••••••••••••••••••••••	• •	101
7.11	The Store with Locations(IDS)	• •	163
7.12		•	163
7.13	Environment (SDG)	•]	164
7 14	Environment (SDS) Original Specification .	•]	165
7.14	Environment (IDS) Original Specification .	. 1	171
D.1	Stoy's Final Example Original Specification .	. 2	209
D.2	••••••••••••••••••••••••••••••••••••••		213
E.1	GEDANKEN		224
E.2	••••••••••••••••••••••••••••••••••••••	, 4	.24
		. /	11

CHAPTER 1

Introduction

The formal aspects of the syntax and semantics of programming languages, together with their underlying theories, have proved to be very useful for systematically writing, or mechanically generating, implementations for these languages.

For example, the style of description of ALGOL60 suggested to E. Irons [Iro61], that the formal syntactic description of the language could be used to control the compiler for the language directly. Shortly after, the term 'compiler-compiler' was already being used by R. Brooker [Bro62] [Bro63], however, [Bro60] describes an 'autocode to write autocodes'.

The micro-syntax of a language - how words are formed - is in general specified by a regular grammar (RG), whose associated implementation system is a finite state machine (FSM). The theory of regular languages and finite automata was developed in the early 1950's and is therefore one of the oldest branches of theoretical computing science. On the other hand, the syntax of a language - how words are put together into sentences - is in general specified by a context free grammar (CFG), whose associated implementation system is a push down automatom (PDA). The early 1960's witnessed a tremendous growth in language theory, the Chomsky hierarchy has been extensively studied by many people. Finally, the semantics of a language - what a sentence means - is for our purposes specified by abstract mathematical entities, a system of functions whose associated implementation system is the lambda calculus (LAM). This method, Denotational Semantics (DS), originated in the late 1960's. C. Strachey in his early paper 'Towards

a formal Semantics' [Str66], showed that with the introduction of a few new basic concepts it was possible to describe not only the applicative, but also the imperative parts of a programming language in terms of applicative expressions [Lan65]. The result of Strachey's joint work with D. Scott, which started in 1969 [Sco70], was the construction of λ -calculus models and reflexive domains: The main point is the treatment of functions as the representation of the meaning of programs, rather than the syntactic or operational representation used thus far.

1.1 Analogy

The three implementation systems: FSM, PDA and LAM, can be regarded as input programs to a compiler generator system whose output can be interpreted by a direct simulation of each underlying machine. For example, from the definition of a particular FSM:

<S, I, s, 0, M> where
S = finite non-empty set of states.
I = finite input alphabet.
s = the initial state in S.
0 = set of final states (0 \underline{C} S).
M = the state transition function ([S x I] \geq S).

one can implement a lexical analyser by a simulation of M (also by adding a set of actions, an error state and a set of declarations global to every action). This approach to automatic generation of lexical analysers is extensively described in [Lew79].

From the definition of a PDA:

- - 2 -

<S, I, P, s, p, 0, M> where S = finite set of states. I = finite input alphabet. P = finite pushdown alphabet. s = the initial state in S. p = the start symbol in P. 0 = set of final states (0 <u>C</u> S). M = the state transition function ([S x [I + {empty}] x P] → finite subsets of [S x P*).

one can implement a parser, by a simulation of P and M, (also adding actions, error state, declarations, attributes values and attributed pushdown symbols). Syntax directed translation has been known for quite a long time, [Iro61], [Knu68], [Lew68], [AaU69], [AaU72] and [Lew79] are just a few references to the subject.

From the DS definition of the semantics of a programming language in LAM:

i:Ide. e:Lam. identifiers lambda expressions

e ::= i | ee' | xi.e | (e)

one can directly implement the conversions of the >-calculus:

a. If i is not free in e, then $i' \cdot e \Rightarrow_a i \cdot [i/i']e$. b. $(i \cdot e)e' \Rightarrow_i [e'/i]e$. n. If i is not free in e, then $i \cdot ei \Rightarrow_n e$.

Pioneer work in the area of compiler generation from denotational semantics, was carried out by P. Mosses [Mos75] [Mos76] [Mos78], whose system known as SIS (Semantic Implementation System), uniformly translates DS equations into LAM, and then runs an interpreter over this 'code'. Also, later work by [Jon80], [Gan80], [Ras80], [Pau81], [Hen82] and [Set82] has shown that semantic directed compiler/interpreter generation out of DS is a young and promising area of research. Mosses's approach is simple and general; He treats a semantic specification as a program for a simulated LAM machine exactly in the same way as an RG or CFG is seen as program for respectively an FSM or a PDA. The result is, however, not always efficient and practical. In particular, the lack of efficiency of SIS reminds one of an analogy between the systems devised to efficiently implement an FSM or a PDA; they are not necessarily a simulation of the underlying automaton. In the same way, one can think of an implementation of LAM which does not necessarily call for a lambda interpreter. The particular problem with a semantic specification is that it refers to a run time activity, as opposed to a syntactic specification which refers to a recognise and parse activity. At run time efficiency matters become crucial.

An alternative approach for achieving an efficient and practical implementation is to use the formal specification to 'derive' or 'generate' a 'program', written in a systems programming language. From an RG one can generate a scanner, from a CFG a parser and from a DS a code generator. These three programs perform each a function which can be expressed as: scanner:[CHA \Rightarrow SYM], parser:[SYM \Rightarrow TRE], translator:[TRE \Rightarrow COD] where CHA = the representation of the source program as a character string. SYM = the internal representation as a sequence of symbols. TRE = the internal representation in the form of a tree. COD = the target code.

In our research, the missing function checker: [TRE \Rightarrow TRE] (to type check and solve the context sensitive aspects of a programming language) is embedded in the code generation phase.

Consider as an example, the RG specification of IDENTIFIERS as an instance

- 4 -

of a lexical specification:

t ::= i	terminals
i ::= u a*	identifiers
a ::= u 1 d	alphabetic
u ::= 'A' 'Z'	upper
$1 ::= 'a' \dots 'z'$	lower
$d ::= '0' \dots '9'$	digit

The first step in a derivation of a scanner is to generate a recogniser:

case ...

Next, one can inject simple implementation techniques to transform it into a

scanner:

```
let scann.next.symbol() be switchon current.character into
{ case 'A' ... 'Z':
    { let v = vec max.ident
      let i = 0
      { i
            := i + 1
        v!i := current.character
        scann.next.character()
      } repeatwhile 'A' <= current.character <= 'Z' \/</pre>
                      'a' \leq current.character \leq 'z' \/
                      '0' <= current.character <= '9'
      v!0 := i
      current.symbol := look.up.ident(v)
    }
   endcase
 case ...
```

}

Note that this scanner, derived from the original RG specification, makes reference to a symbol structure via the call of the function look.up.ident

whose specification was not given and is left open for an implementer to design according to his own implementation choice. Also the interface to an operatimg system or front-end, throughout the call of the procedure <u>scann.next.character</u> is also left unspecified, so that in a different environment, or different hardware configuration, an implementer can choose the appropriate implementation.

Now consider the CFG specification of a WHILE-LOOP as an instance of a command definition:

 $c ::= While b Do c_1 | \dots$

Again, the first step is to derive a recogniser for this fragment, for example:

```
let parse.c() be switchon current.symbol into
{ case symbol.While:
    { scan.next.symbol()
        parse.b()
        check.for(symbol.Do)
        parse.c()
    }
    endcase
case ...
```

Next, this recogniser can easily be made into a parser (a tree constructor) by adding appropriate action routines:

```
let parse.c() = valof switchon current.symbol into
{ case symbol.While:
    { let pl, p2 = nil, nil
        scan.next.symbol()
        pl := parse.b()
        check.for(symbol.Do)
        p2 := parse.c()
        resultis make.node2(N2..While, pl, p2)
    }
```

```
case ...
```

In this parser, one must note again, how the structure of the internal representation of the syntactic structure of a program is not specified. Again this leaves crucial implementation details open for an implementer to decide. So in this respect, we are arguing for a generation of structured and efficient compilers.

Finally, consider the semantic specification for the same fragment:

Syntactic Domains		
b:Boo.		boolean expressions
c:Com.		commands
i:Ide.		identifiers
Syntax		
c ::= While b Do c ₁		
Semantic Domains		
D.		denoted values
S.		states
$c:C=[S \ge S]$.		command continuations
$k:K=[T \ge C].$		expression continuations
t:T=[{ True } + { False }].		boolean values
$p:U=[[Ide \rightarrow D] \times C].$		environments
Semantic Selector	× .	

Semantic Functions $B:[Boo \Rightarrow U \Rightarrow K \Rightarrow C]$. $C:[Com \Rightarrow U \Rightarrow C \Rightarrow C]$.

C[While b Do c₁]pc= Fix{**\c'.B[b]**p{**\t.t**→C[c₁](p[c/BRK])c',c}}.

This definition is far more complex in its structure and information content than the syntactic one above. Though at first one may have the impression that the relationship between this semantic specification and a procedure to generate code for the same fragment is hopelessly unrecognisable, in fact, there are many systematic relationships between both. This relationship is important to anyone who wishes to study semantic or implementation structures. As an example of the correspondence that we are proposing here is the first step; The derivation of the skeleton of a translator:

```
let trans.C(node, p, c) be switchon type^node into
{ case N2..While:
    Fix(\cl.trans.B(pl^node, p, \t.t>trans.C(p2^node, p([c/BRK]), cl),c))
    endcase
    case ...
```

The second step is to derive from this, the translator or code generator:

```
let trans.C(node).cont.(continue, jump) be switchon type^node into
{ case N2..While:
    {0 let restart.code = here(D..COD)
        let continuel = forward(D..COD)
        trans.B(pl^node).cont.(continuel, false.jump).dest.(first.reg)
        fix.here(continuel)
        trans.jump.if.false(first.reg, continue)
        { let old.env = this.env
            declare(D..COD, continue, BRK)
            trans.C(p2^node).cont.(restart.code, true.jump)
        reset(old.env)
    }0; endcase
```

```
case ...
```

}

The functions and procedures <u>here</u>, <u>forward</u> and <u>fix.here</u> relate to open implementation issues with respect to a code structure; <u>declare</u>, <u>reset</u> and <u>this.env</u> refer to a descriptor structure; <u>first.reg</u> to a run-time structure; <u>trans.jump.if.false</u> to a code generator interface; <u>trans.B</u> is a procedure which is expected to be generated accordingly to the DS specification for boolean expressions; And finally <u>node</u>, <u>type</u>, <u>pl</u> and <u>p2</u> refer to a tree structure.

1.2 Our contribution

The generation of an efficient and practical program out of the formal specification of the syntax (or lexical) issues of a programming language is a solved problem. However, the generation of an efficient translator out of a semantic specification in the form of a denotational semantics is not. This thesis: A Correspondence Between the Denotational Semantics of Programming Languages and the Process of Code Generation, has grown out of experience in the engineering task of implementing a semantics directed compiler generator. As will be quite evident, the method, as with the analog problem, is to generate a program, written in a systems syntactic programming language, by transforming the semantic specification. The treatment of the relationships, between the source semantics and the target implementation indicates clearly a dependency upon the form and structure of both source mathematical metalanguage and target systems programming language. However, the manner in which the generation is formulated does not adhere rigidly to any particular semantic or implementation model. As a result, the method can be readily adapted to a variety of practical situations.

An essential feature of this thesis is the series of compiler generation examples presented, in general taken from J. Stoy's "Denotational Semantics: The Scott-Strachey Approach To Programming Language Theory" [Sto77]. This is designed to make the format more approachable to anybody familiar with this excellent account of denotational semantics.

This thesis will show how one can systematically derive, or automatically generate, the code generation phase of compilers for languages like those

- 9 -

given as examples of semantic definitions in [Sto77] or as complex as GEDANKEN [Rey70].

The novel aspect of our contribution is our method of analysing a denotational specification. From a purely mathematical point of view the way that functions in some abstract space are described is irrelevant. But if one is to process this specification automatically, then the particular representation of these functions is important. We call this representation the concrete semantics. Concrete semantics can be interpreted algorithmically. This is what P. Mosses did by a direct interpretation of LAM. Our approach is characterised by the observation that under an appropriate algorithmic interpretation, functions and domains of a concrete semantics, can be regarded as procedures and data-types. Such interpretation amounts to establishing a correspondence between functions and procedures and therefore also between domains and data-types,

the automatically generated (or structure and operation of The systematically derived) code generator, which is written in the systems programming language BCPL, is in effect very similar to the one we might have produced by hand. The only hand coding is the interface for the particular target machine, required for both the primitive functions of the original specification and those introduced by the generation. For the latter, our system provides a library of routines to generate code for the DEC-10 system, so that in all the examples we tried, we only had to hand code the former. The parser is separately generated with an LL1 system which generates procedures in the same systems programming [Suf78a] language.

Our research is not directly concerned with the problem of correctness. We are mainly interested in the correspondence between a denotational specification and the process of code generation. We are also interested in showing that this correspondence can be used to produce a compiler-compiler, and that the code generators obtained by such a system produce efficient code.

In the following sequence of operations:

0. Given a transformational system T

- and a denotational specification S of a programming language L.
- 1. Using T, generate from S a code generator G for L.
- 2. Using G, compile a program P (in L) producing code C for the DEC-10.

3. Running C over some input I obtaining an output O.

we have limited our requirements for correctness to the empirical results of the input/output behaviour of T, G and C respectively in 1, 2 and 3.

However we do appreciate the need for correctness proofs. So among the lines given for future research, we indicate how we might proceed to prove the correctness of the automatically generated (or systematically derived) code generators.

1.3 The Form of this Thesis

In Chapter 2 we introduce a mechanism of transformation, a production rule system to transform semantic equations into procedures of the programming language BCPL [Ric79]. Chapters 3 to 5 each analyses a different programming language example (from [Sto77]) with increasing levels of difficulty. The main features are respectively: state, environment and continuations. Chapter 6 looks at the Lambda Calculus, defined using both direct and continuation semantics, both with call by value and name. Chapter 7 describes a different approach: instead of starting with a standard denotational semantics, we study the possibility of abstracting implementation ideas at a denotational level, thus starting with an implementation denotational semantics. The objective of this exercise is the generation of more efficient code generators and also to provide the grounds for correctness proofs, as we have shown in [Ras80]. Finally, Chapter 8 looks at some future directions of our research.

Appendix A briefly describes the implementation of a system called ISL (Implementation Semantic Language), which has automatically generated all the examples shown in this thesis ([Ras79] [Ras80] [Ras81] [Ras82]). In Appendix B, we have collected together all transformation rules. Appendix C defines the operators used in the source and target metalanguages. Appendices D and E show the two main examples, Stoy's example language and GEDANKEN.

CHAPTER 2

Production System

In this chapter we introduce the notation used to describe the transformation process which, starting from a DS description of a particular programming language, ends up with a Code Generation Process (CGP) for the same language. From the DS specification, we will deduce (and generate) procedures written in the systems programming language BCPL [Ric79]. These procedures are language dependent and by contrast, under certain design options machine independent. They are the non-primitive operations of a CGP, whose primitive operations and target machine are not specified. In other words, we are regarding the DS as a specification of a CGP. In order to deduce the CGP, we will apply a set of transformations which are formally defined by production rules, each one consisting of a conditioned conversion.

2.1 Metalanguages

2.1.1 Source

Before we can define precisely what we mean by a 'transformation', we have to formalise the metalanguage in which the semantic specifications are written. It is an extension of the typed *X*-calculus, the well-formed formulae WFF_c (source) of this metalanguage are:

S:Sou.	source expressions
a:Nam.	non-decorated names
d:Dom.	domain expressions
e:Exp.	lambda-expressions
f:Fun.	function operators
g:Dop.	domain operators
i:Ide.	semantic names
m:Mon.	monadic operators
n:Num.	numerals
o:Opr.	dyadic operators

p:Par.
q:Equ.
s:Syn.
v:Val.
d::= i | d* | d_1fd_2 | [d]
e::= S
f::= + | x | >
g::=? | ?? | '|' | In
i::= a | a_1 | ... | a_n | a* | v | [s]
m::= #
o::= o | * | + | t | = | Eq | Ne | Ls | Le | Gr | Ge
p::= pp_1 | i |
$$\langle i_1, \dots, i_n \rangle$$
 | null
q::= vp=e.
S::= i | n | $\lambda p \cdot e | \lambda p \cdot \dots e | e_1 e_2 | e \geq e_1, e_2 | me_1 | e_1 oe_2 | egd |$
 $[e_1/e_2] | e_1 \dots e_n | e_1 where p=e_2 | $\langle e_1, \dots, e_n \rangle$ | (e)$

The semantics of the different operators are formally defined in Appendix C. Projections ('|') and injections (In) are 'transparent', meaning that they do not intervene actively in the process of transformation; they are kept only as long as they are active carriers of information about functionality; as soon as they become unnecessary they are automatically deleted.

2.1.2 Target

We also have to formalise the final outcome well-formed formulae WFF_t (target), which is a subset of the language BCPL:

T:TAR.	target
A:AUX.	auxiliary parameters
C:COM.	commands
D:DUM.	dummy parameters
E:EXP.	expressions
I:IDE.	identifiers
N:MON.	monadic operators
O:OPR.	dyadic operators
P:PAR.	parameter lists
A ::= .dest.(P)A .cont.(P)A null	A BRITH & DO
С ::= Т	
D ::= I I,D null	101254
$E ::= I E(P)A E_1OE_2 N E E \to E_1, E_2 (E)$	
N ::= ! not	
0 ::= ^ ! + - = Eq Ne Ls Le Gr Ge	
$P ::= E \mid E \cdot P \mid null$	

 $T ::= \{C\} \mid \text{let I(D)A be } C \mid \text{let I(D)A=valof } C \mid \text{let I=E} \mid \text{resultis } E \mid \\ E_1 := E_2 \mid E(P)A \mid \text{test } E \text{ then } C_1 \text{ or } C_2 \mid \text{if } E \text{ then } C \mid \text{ unless } E \text{ do } C \mid \\ \text{for I=E}_1 \text{to } E_2 \text{do } C \mid \text{ switchon } E^1 \text{ into } C \mid \text{case } I:C \mid \text{endcase } \mid C_1; C_2 \end{cases}$

The operators are also defined in Appendix C. In Essex-BCPL, the sequence "). and any character up to (", is equivalent to comma. As an aid to the eye and where appropriate, we will replace ';' by a new line. Also, when the length of a parameter list is not relevant, we will allow possible null parameters. For example: $E_0(P_1, E_1, P_2)$ may denote an instance of a function or procedure call with any P_i optionally null. Similarly, we will allow possible null commands, for example: { C_1 ; C; C_2 } may denote a block instance with any C_i optionally null.

2.2 Conversions

2.2.1 Rules

Conversions are defined by production rules of the form:

 $e_0 \Rightarrow e_1$

meaning that e_0 is converted to e_1 . Except for the first and last conversion of a given expression, where respectively e_0 :WFF_s and e_1 :WFF_t, e_0 and e_1 belong to WFF_m (the middle metalanguage), the combination of both source and target which results of the following redefinition of e:Exp and C:COM:

m:Mid.	middle expressions
M ::= S T	
e ::= M	
C ::= M	

2.2.2 Conditions

Conversions are conditioned by boolean expressions, introduced by when, which 'trigger' the transformations and 'syntactically sugared' by where and

rename expressions. In general they are of the form:

where $e_0 = e_2$ | => | where $e_1 = e_3$ when $\langle condition \rangle$ | | rename i=>1

This conversion indicates that under both where definitions, if $\langle \text{condition} \rangle$ is satisfied, then e_0 is to be transformed to e_1 . The rename construction helps to shorten the length of conversions, it indicates the substitution of I for i in e_1 (equivalent to $[I/i]e_1$). Expressions in when, where and rename clauses are defined by:

- Informal text.
- Usual boolean and arithmetic operators.
- Test for domain membership ':' and domain re-definition In.
- Test for sub-domain C.
- Textual equivalence = and non-equivalence +.

For example, the rule to transform an expression involving the minimal fix point finder of a state to state abstraction is:

when i:[S>S] Fix(li.e) | => | { let i = here(COD); e } | | rename i=>restart.code

This rule is specifying a transformation for every expression of the form indicated by the left hand side, if and only if, the bound variable 'i' belongs to the domain $[S \Rightarrow S]$. The result of such a rule is indicated by the form of the right hand side. The rename construction specifies that the name 'i' must be substituted by 'restart' in every sub-expression of the right hand side; this includes the let declaration and also any occurrence of 'i' inside 'e'.

Textual equivalence = and non-equivalence \pm are used to test the particular instance of a WFF_m expression. For example:

e=e1e2 and e1 + >p.e3

is equivalent to

IsApplication(e) and not IsAbstraction(FunctionPart(e))

2.3 Transformations

A transformation is the process of actively filtering a WFF_s through all possible conversions, under the constraints indicated by the conditions. The productions are divided into different disjoint subsets. Among them we can find syntactic, semantic and optimising transformations. The following is a list of all subsets:

Normalisation
 State Analysis
 Syntactic Transformations
 Splitting Continuations
 Destination Analysis

6 Continuation Analysis
7 Environment Analysis
8 Optimising Continuations
9 Optimising Transformations
A BCPL

Each rule will be numbered as [Rn.i], where n is one of <1..9, A> as described above, and i is the rule number within n. To illustrate the nature of the transformations, we shall indicate the intermediate steps by 'snapshots'.

The information required to perform the transformations is obtained, firstly, from the concrete semantics, i.e: from the particular representation of the semantic functions, and secondly from certain domains that our system has to know about. To avoid having to write semantic equations with name dependency, we introduced the idea of a 'domain of interest', which for a given compiler-generation process must be given. The following is a list of all domains of interest known to our system:

ANS	Answers
ENV	Environments
TEM	Templates(functions and procedures)
B00	Compile-Time booleans
LOC	Locations

STA States REG Registered values THU Thunks(call by name) INT Compile-Time integers QUO Quotations

The importance of these domains, is that they characterise, from a code generation standpoint, the minimal information required to transform the programming languages that we will consider.

2.4 An Example

	Snapshot	2.1: The	Lambda C	alculus.	Original	Specificati	on
Syntacti i:Ide. e:Exp.	ic Categor	ies	1. 		na cai (n ani tan)	identifie lambda-ex	rs(undef) pressions
Syntax e ::= i	Lam i.e	1 e ₁ e ₂					
Semantic N. e:E=[N ⊣ F=[E → p:U=[Ide	<pre> Domains F]. E]. E]. E]. </pre>	9195 ¹¹				basic val values of function environme	ues expressions values nts
Semantic ENV=U. REG=E. TEM=F.	mantic Domains of 'Interest' ENV=U. REG=E. TEM=F.		environments registered values templates				
Semantic E:[Exp 🗦	Equation → U → E].	15			an antar 19.19 20. solu		(2.1.1)
E[i]p= p[i].							(2.1.2)
E[Lam i. Strict	.e,]p= t(Xe.E[e ₁]	(p[e/[i]]))) In E.				(2.1.3)
E[e_e_]] (Xee')	p= .(e F)e')([E[e ₁]p)(E	[e ₂]p).				(2.1.4)

We have introduced the mechanism of transformation. In the following chapters, we will follow [Sto77] examples; for every example language, we will define the appropriate conversion rules. To conclude this introductory chapter, we will follow the transformation process for the Lambda Calculus in its direct form with call by value. The original specification for this language is shown in Snapshot 2.1.

2.4.1 Syntactic Transformations

The first transformation set for this language is syntactic. It consists of rules which do not convey any implementation detail, only necessary to shape the CGP in a procedural form. It can be understood as a transformation set which just projects concrete semantic constructs of the original metalanguage to equivalent constructs of a different one. The difference is that the new procedural metalanguage is more suited to an algorithmic interpretation. In Snapshot 2.2 we show the result of such transformations. Note that we are 'tagging' transformations with their rule number even though these rules will be defined in the following chapters. However, to show the flavour of the transformation process, in this example we will display some transformations. Here is R1.1:

 $v[s_1]p=e_1 \cdot | if n>1$ | let v node p be $| switchon type^node into$ $v[s_n]p=e_n \cdot | i \{ case [s_1]: e_1; endcase$ | i | if n=1 | if n=1 $| let v node p be e_1$

Also note that at this stage in the analysis, E is declared (2.2.1) in a similar way as procedures are declared in BCPL, however, it is used as a

- 19 -

Snapshot 2.2: The Lambda Calculus. Syntactic	Transformati	lons
<pre>let E(node, p) be switchon type^node into { case [i]:</pre>	by R1.1, R3.	.1 (2.2.1)
p([i]); endcase	by R1.1, R3.	.2 (2.2.2)
<pre>case [Lam i.e₁]: (he.E([e₁], p([e/[i]]))) In E; endcase</pre>	.2/twice, R3	.6 (2.2.3)
<pre>case [e₁e₂]: { let e² = E([e₁], p); let e² = E([e₂], p); e F(e²)</pre>	') }; endcase es, R3.3, R3.	e •4 (2•2•4)

function in (2.2.3) and (2.2.4). This is a symptom of showing an intermediate stage of the transformation process. If we were to provide a proof of correctness for each stage in the analysis, then we would have to define precisely the semantics of each intermediate metalanguage.

2.4.2 Semantic Transformations

Rules within this transformation set are driven, not only by the form of the concrete semantics, but also by those domains about which the transformation system knows, i.e: the domains of 'interest'. For example, the domains REG, TEM and ENV of Snapshot 2.1 are respectively but not exclusively driving the destination, continuation and environment analysis.

Destination Analysis: After analysing the use of temporary values the transformation process looks like Snapshot 2.3, where <u>reg</u>, <u>first.reg</u> and <u>first.par</u> can be understood as fast registers or as pointers to an activation record. Note that every semantic function giving a result in a summand of the definition of the domain of interest REG, gets a .dest.(reg) added to its parameter list. <u>trans.load</u> is a procedure introduced by the transformation process. Its first parameter indicates the type of object to be loaded; this information is used for compile or run-time type checking.

Snapshot 2.3: The Lambda Calculus	• Destination Analysis	
let E(node, p).dest.(reg) be switchon type [*]	node into by R5.1	(2.3.1)
{ case [i]:	CONSTRUCTION DESCRIPTION	
<pre>p([i]).dest.(reg); endcase</pre>	by R5.3	(2.3.2)
case [Lam i.e.]:		
<pre>trans.load(F, E([e,], p([first.par/[i]]</pre>)).dest.(first.reg)).des	st.(reg)
In E; endcase by R5.3/to	wice, R5.8, R5.9, R5.10	(2.3.3)
case [e,e_]:		
E([e, 1, p).dest.(reg)		
$\mathbf{E}([e_2], p).dest.(reg+1)$		
<pre>reg f(reg+1).dest.(first.reg); endcase }</pre>	by R5.4/twice, R5.11	(2.3.4)

The second parameter is the object to be loaded into the destination indicated by the third parameter, the .dest.(reg) construction. This mechanism requires all <u>regs</u> to be carriers of type information. In this example, the object to be loaded is a function value and it is up to <u>trans.load</u> to plant the appropriate code to load a closure.

Recall the analogy between the lexical and syntax analysis problem, with the semantic one, as presented in the Chapter 1: Primitive procedures and functions like <u>trans.load</u>, introduced by the transformation process, are to the code generation process what primitives like <u>scann.next.character</u> and <u>look.up.ident</u> are to a scanner, or what <u>scan.next.symbol</u> and <u>make.node</u> are to a parser. These activities are not part of the initial specification, but are deduced and left semi-specified. In this respect, we regard a specification (lexical, syntactic or semantic) as a schema for machine translation with slots which have to be filled in.

Continuation Analysis: Next we correlate code fragments. This transformation set is called Continuation Analysis, but note that its effect is felt in languages whose specifications do not have continuations. This is because we

Snapshot 2.4: The Lambda Calculus. Continu	ation Analysis
let E(node, p).dest.(reg) be switchon type node into	no change
{ case [i]:	no change
case [Lam i.e.]:	
$\{ \text{let ntry}, \text{dom}F = \text{forward}(F) \}$	
<pre>let exit.code = forward(COD)</pre>	
<pre>let skip.code = forward(COD)</pre>	
trans.jump.to(skip.code)	
trans.entry(ntry.domF, node)	
<pre>E([e,], p([first.par/[i]])).dest.(first.reg)</pre>	
trans.exit(exit.code, node)	
fix.here(skip.code)	
<pre>trans.load(F, ntry.domF).dest.(reg)</pre>	
}; endcase	by R6.4 (2.4.3)
case [e ₁ e ₂]:	and the second second second
E([e ₁], ² p).dest.(reg)	
$E([e_0^1], p).dest.(reg+1)$	

trans.call(reg|F, reg+1).dest.(first.reg); endcase by R6.6 (2.4.4)

associate continuations with pointers to code, and code is clearly produced regardless of the presence of continuations explicitly in the definition. In the Lambda Calculus, the two transformations at this stage are the specification of abstraction and of application, as can be seen in Snapshot 2.4. The transformation process, carrying considerable expert information, has isolated here 'crucial code fragments'. The places for entry to, exit from and call to a function have been recognised. The domain of interest TEM indicates which is the domain of functions and together with the particular form of the concrete semantics, provides the necessary information for the transformation process to insert appropriate procedure calls whose task is to generate code for these three crucial places. The fact that the code associated with the body of a function must not be executed at declaration time results in the 'skip' statements. Forward references are also handled by inserting appropriate procedure and function calls. To illustrate how this expert information is reflected by the transformation rules, here is R6.4:
Environment Analysis: Assuming a block structured use of the environment, we argue that a direct simulation of the mathematical environment function is not feasible if efficiency is desired. Thus we translate in a way to have only one global environment around at a time, for which we provide a data structure (a symbol table) and primitives to declare search and undeclare denoted elements. Environments disappear from parameter lists and a structure is used to recover from declarations to the global environment (a stack or A-List). The main transformation rule of this analysis is R7.1, defined as follows:

After these transformations, our example looks like Snapshot 2.5. Note how this text looks almost like the text of a program written in BCPL. At this stage in this example, the only issues that still look denotational are the 'node references' enclosed between '[' and ']' and the projection '|'.

The primitives <u>look.up</u> and <u>declare</u> might or might not plant code, depending on the structure of the particular denoted value under scrutiny. In (2.5.2) <u>look.up</u> has to plant code to load a value into the destination reg. In

- 23 -

Snapshot 2.5: The Lambda Calculus. Environme	nt Analysis	and the second
let E(node).dest.(reg) be switchon type^node into	by R7.5	(2.5.1)
{ case [i]:		
<pre>look.up([i]).dest.(reg); endcase</pre>	by R7.4	(2.5.2)
case [Lam i.e.]:		
{ let ntry.domF = forward(F)		
<pre>let exit.code = forward(COD)</pre>		
<pre>let skip.code = forward(COD)</pre>		
<pre>trans.jump.to(skip.code)</pre>		
trans.entry(ntry.domF, node)		
{ let old.env = this.env		
<pre>declare(domain.of(first.par), first.par, [i])</pre>		
<pre>E([e₁]).dest.(first.reg)</pre>		
reset(old.env)		
}		12.4
trans.exit(exit.code, node)	4	
fix.here(skip.code)		
<pre>trans.load(F, ntry.domF).dest.(reg)</pre>		
}; endcase b	y R7.1, R7.2	(2.5.3)
case [e ₁ e ₂]:		
$E([e_1])$.dest.(reg)		
$E([e_2^{\dagger}])$.dest.(reg+1)		
trans, call(reg)F, reg+1).dest.(first.reg); endcase		

by R7.6/twice (2.5.4)

(2.5.3), <u>declare</u> plants code to store the parameter into a temporary location updating the global symbol structure to reflect the binding to this temporary. <u>look.up</u> plants code because the Destination Analysis recognised denoted values as belonging to REG. In a different language with denoted values not in REG, the look up request will not plant any code, this would be signalled by the absence of the .dest.() construction. <u>declare</u> plants code if the object to be declared is contained in a run-time temporary place.

In 'dynamically' bound languages, the global symbol structure has to be maintained at run time, hence, all operations of 'statically' bound languages, which maintain a compile-time global symbol structure, have to plant code to maintain a similar one at run-time. These operations are those dictated by the same primitives <u>declare</u>, <u>look.up</u>, <u>reset</u> and by the statement: let old.env=this.env.

This mechanism to eliminate the environment is applicable, provided declarations are block structured and environments are used in such a way that it is not the case of two different environments accessible at the same moment. It can only be applicable when one single global symbol structure can represent the whole environment. If such a condition does not hold, then transformations will have to preserve the environment as one more parameter to every code generation procedure.

2.4.3 Optimising Transformations

Optimisations are not essential, but strengthen our main objective of generating a CGP which is efficient and usable. In Snapshot 2.6 we can see that the CGP relies on a 'tree-weighting' algorithm [Bor79] to allocate fast registers (if <u>first.reg</u> is seen as such, and not as an activation record pointer).

2.4.4 BCPL

Finally, an interface from a syntax analyser provides the syntactic information to rename node references with the appropriate names or selectors. Also at this stage we rename curly functions and domain names. The final version is shown in Snapshot 2.6. It can be successfully compiled in BCPL, and, if provided with a machine interface and syntax analyser it is a compiler for the Lambda Calculus.

Snapshot 2.6: The Lambda Calculus. BCPL let trans.E(node).dest.(reg) be switchon type node into by RA.1 (2.6.1){ case T..Ident: (2.6.2)by RA.1/twice look.up(node).dest.(reg); endcase case N2.. Abstraction: { let ntry.domF = forward(D..F) let exit.code = forward(D..COD) let skip.code = forward(D..COD) trans.jump.to(skip.code, true.jump) trans.entry(ntry.domF, node) { let old.env = this.env declare(domain.of(first.par), first.par, pl^node) trans.E(p2^node).dest.(first.reg) reset(old.env) } trans.exit(exit.code, node) fix.here(skip.code) trans.load(D..F, ntry.domF).dest.(reg) by R8.2, RA.1/3 times, RA.2/5 times (2.6.3)}; endcase case N2.. Application: trans.E(pl^node).dest.(reg) test weight^p2^node=max.reg then { let old.env = this.env let dmp.loc = trans.dump(reg) trans.E(p2^{node}).dest.(reg) trans.call(dmp.loc, reg).dest.(first.reg) reset(old.env) { let nxt = next(reg) or trans.E(p2^{node}).dest.(nxt) trans.call(reg, nxt).dest.(first.reg) by R9.1, RA.1/5 times, RA.2/3 times (2.6.4)}; endcase

- 26 -

CHAPTER 3

State

In Chapter 2 we have introduced the production system that formalises the transformation process by which we will produce the code generation processes, but no transformation rules were described. In this chapter we start describing the correspondence that is the concern of this thesis. We will consider a simple language of flow diagrams based on [Sto77] Table 9.1, as reproduced in Snapshot 3.1 below.

The main topic of this chapter will be the State Analysis. However, in order to place in context such analysis we have to prelude it with the Normalisation analysis and postlude it with Syntactic and Semantic transformations. So in effect we will define all transformation rules that allow us to transform the original specification (in the source metalanguage WFF_c) to the final CGP (in WFF_t).

In the semantic specification of Snapshot 3.1, the state has been explicitly written everywhere; even where it can easily be eliminated. This can be achieved, for example, by use of the composition operator in (3.1.3) or by use of the 'star' operator in (3.1.4) to (3.1.6) and (3.1.10). This short hand version will be analysed shortly, once we have introduced the transformations to perform state elimination when explicitly used.

Note that although there are no commands producing side effects, the specification is designed as if there are. In the following sections we will enlarge the language with assignments. For the moment, to avoid clustering, we limit our analysis to the equations listed below.

```
Snapshot 3.1: Algebraic Language of Flow Diagrams. Original Specification
Syntactic Categories
c:Com.
                                                                  commands
                                                                  expressions
e:Exp.
Syntax
c ::= Dummy | If e Then c_1 Else c_2 | c_1; c_2 | While e Do c_1 |
     c, Repeatwhile e
e ::= True | False | If e_1 Then e_2 Else e_3
Semantic Domains
t:T=[{ TRUE } + { FALSE }].
                                                                  truth values
s:S.
                                                                  machine states
                                                                  command values
c:C=[S \ge S].
W = [S \rightarrow T].
                                                                  expression values
Semantic Domains of 'Interest'
                                                                  registered values
  REG=W.
  STA=S.
                                                                  states
Semantic Equations
                                                                              (3.1.1)
C:[Com \neq C].
C[Dummy]=
                                                                (3.1.2)
  ks.s.
C[c_1;c_2] =
  λs.C[c<sub>2</sub>](C[c<sub>1</sub>]s).
                                                                              (3.1.3)
C[If e Then c_1 Else c_2] =
  xs.E[e]s→C[c<sub>1</sub>]s,C[c<sub>2</sub><sup>2</sup>]s.
                                                                              (3.1.4)
C[While e Do c_1] =
  Fix{cs.E[e] \xrightarrow{1}{s} c(C[c_1]s),s}.
                                                                              (3.1.5)
C[c, Repeatwhile e]=
                                                                              (3.1.6)
  Fix\{xcs.\{xs'.E[e]s' \rightarrow cs',s'\}(C[c_1]s)\}.
                                                                              (3.1.7)
E:[Exp \rightarrow W].
E[True]=
                                                                              (3.1.8)
  Strict()s.TRUE).
E[False]=
                                           (3.1.9)
  Strict()s.FALSE).
E[If e_1 Then e_2 Else e_3] =
  xs.E[e,]s→E[é,]s,E[e3]s.
                                                                             (3.1.10)
```

3.1 Normalisation

In Snapshot 3.1, we observe that C and E are recursively defined by cases over their different syntactic alternatives; This isolates, for each alternative, a semantic value. From the domains to which these values belong and from the concrete semantics, we wish to discover code generation actions. Because of the nature and structure of code generation, these actions will each be associated with a different syntactic construction; a different node of a parse tree. It seems then that the definition by cases over the different syntactic alternatives is an appropriate structure both for semantic definitions and code generation. But the form of a simultaneous set of mutually recursive equations can be algorithmically expressed by a set of mutually recursive procedures. In this case there are two semantic hence two procedures. Preserving this structure, we will valuators. transform the sequence of equations into two let declarations, each followed by a switchon statement selecting similarly by cases. To do this, we need to restrict equations to be homogeneous in their parameter lists, each case must be written with the same number of parameters. A pre-processor could be easily defined to automate this process, but this is not our main concern. We will assume that equations are homogeneous in this way and formalise this transformation by the following conversion:

 $v[s_{1}]p=e_{1} \cdot | if n>1$ | let v node p be $| switchon type^node into$ $v[s_{1}]p=e_{1} \cdot | \{ case [s_{1}]: e_{1}; endcase$... $v[s_{n}]p=e_{n} \cdot | case [s_{n}]: e_{n}; endcase$ | | if n=1 | if n=1 $| let v node p be e_{1}$ [R1.1]

Next, two transformations which are not more than syntactic 'de-sugaring'.

Snapshot 3.2: Algebraic Language of Flow Diagrams. No:	rmalisat	ion
<pre>let C node be switchon type^node into { case [Dummy]:</pre>	by R1.1	(3.2.1)
}s.s; endcase	by R1.1	(3.2.2)
case [c ₁ ;c ₂]: xs.C[c ₂](C[c ₁]s); endcase 1	by R1.1	(3.2.3)
case [If e Then c ₁ Else c ₂]: ≿s.E[e]s→C[c ₁]s,C[c ₂]s; endcase	by R1.1	(3.2.4)
case [While e Do c_1]: Fix($c.$ s.E[e]s \neq c(C[c_1]s),s); endcase by R1.	1, R1.2	(3.2.5)
<pre>case [c₁ Repeatwhile e]: Fix(\c.\s.(\s'.E[e]s'>cs',s')(C[c₁]s)); endcase by R1. }</pre>	1, Rl.2	(3.2.6)
let E node be switchon type node into	by R1.1	(3.2.7)
Strict()s.TRUE); endcase	by R1.1	(3.2.8)
<pre>case [False]: Strict()s.FALSE); endcase</pre>	by Rl.1	(3.2.9)
case [If e ₁ Then e ₂ Else e ₃]: <code>\s.E[e₁]s→E[e₂]s,E[e₃]s; endcase }</code>	by R1.1	(3.2.10)

The first one is required for the example language of this chapter, however the second one is introduced now, but only required later. A cross reference of rule numbers and the pages where they are defined and used is given in Appendix B.

kip.e => ki.kp.e [R1.2]

 e_0 Where $p=e_1 \implies \{ \text{let } p=e_1 ; e_0 \}$ [R1.3]

Note that the Where construction above, is a WFF_s expression, and not a condition.

These transformations are the first step towards a translation into BCPL. Semantic equations are written in a mathematical metalanguage, and we have just projected an image, of a valuator's sequence of equations, into a procedure selecting by cases over one of its parameters. Snapshot 3.2 shows the shape of the semantic equations after these transformations, they are 'tagged' with the transforming rule number.

3.2 State Analysis

When analysing languages in a semantic world which includes a 'machine state' it is important to realise the distinction between 'compile-time' and 'run-time' activities. In an early paper, C. Strachey pointed out the distinction between:

 $L[e_1 \neq e_2, e_3]s = L(if(R[e_1]s) < [e_2], [e_3] >)s.$ and $L[e_1 \neq e_2, e_3]s = if(R[e_1]s) < L[e_2], L[e_3] > s.$

"...the first expression, in which the choice is made between alternative [e]'s to translate and run, corresponds to an interpretive or "translate as you run" scheme, while the second, in which the choice is between already translated operators, corresponds to the more common scheme of separate compiling and running phases." [Str66]-p206

These two equations define precisely the same value, however, C. Strachey was aware that it is possible to give two different (algorithmic) interpretations to the concrete semantics, one corresponding to an interpreter, the other to a compiler.

Our primary objective is to analyse the relationship between a semantic specification and an associated code generation process, hence we are interested in the second form. Moreover, we are interested in completely splitting those actions that correspond to a compiler from those that correspond to the generated code. Consider: $M : [PRO \Rightarrow [STA \Rightarrow STA]]$ $C : [PRO \Rightarrow COD]$ $H : [COD \Rightarrow [STA \Rightarrow STA]]$

Where M is the semantic function abstracting the meaning of a program p:PRO in a language with state s:STA. C is a compiler producing some code c:COD, which is in turn 'run' on the hardware of a particular machine H. We clearly require M=H o C. Hence, a compiler performs an action that ends up with a representation of the [STA \Rightarrow STA] function. The state analysis uses this observation, so that each equation provides a function in [STA \Rightarrow STA] for each syntactic alternative. The concrete semantics thus is a representation of a [STA \Rightarrow STA] function and successive refinements transform it into the code generator, which as we saw above produce, in turn, such a representation; namely the code.

3.2.1 No Copies of the State Allowed

Before starting with the analysis refered to above, we have to restrict the use of the state. It is very easy to write semantic equations that force copying the state, for example imagine a definition of sequencing like: $C[c_0;c_1]s=(\lambda s' \cdot C[c_1]s)(C[c_0]s)$. This equation specifies that both $[c_0]$ and $[c_1]$ must be evaluated in the same state s. This implies copying the side effects of $[c_0]$ represented by s'. With the hardware configuration of todays machines, this is a very expensive operation (although there are experiments like the 'highly reliable' system of the University of Newcastle [Ran75]), and as J. Stoy points out:

"...The semantics of this would involve more than the 'single thread' treatment of s that we practise in the present equations; it is of course expensive in memory." [Sto77]-p231

Hence, we will not consider languages whose implementation involves

maintaining a copy of the state. This is a pre-condition of the correspondence that we are describing.

We are now ready to continue analysing the simple language of flow diagrams. We will develop, first, a sequence of transformations to eliminate the state. This transformation process works by 'brute force', it can be applied provided we ensure that the programming language under scrutiny does not require its implementation to maintain a copy of the state. Secondly, we will develop an alternative method: rewriting the semantic equations by 'structuring' the state with appropriate operators and primitive functions. The state will, then, never be explicitly used in any semantic valuator. The associated transformations will follow the structure of the new operators and primitive functions, and hence this second method will be shown preferable. However, both methods will result in BCPL programs which are, in effect, equivalent. The only differences are the primitive procedures introduced by the transformation process (P1), in place of the procedures (P2) which correspond to the primitive functions introduced in the semantic specification. Primitive functions in the original specification are preserved through the the transformation process and appear as primitive procedures in the target CGP. Under the same interpretation of Pl and P2, both methods produce equivalent code generators.

3.2.2 First Method - Elimination

We first observe that this language fulfils the pre-condition described above; there are no copies of the state; it is passed around as a 'single thread'. But note that to say so means that we have to explicitly look at every expression involving a state. There are five ways that it is used, namely: identity, abstraction, application, conditional and as a strict abstraction. We will consider each one in turn:

Identity: The identity function specifies that the state must be left exactly as it is, this is a trivial case in that it implies that no code is generated. We indicate this by an empty block: when i:STA $i.i \Rightarrow \{\}$ [R2.1]

Abstraction and Application: Abstracting on the state, means that the body of the abstraction will perform an action in a new state, which will be produced by some code previously generated, it is not the concern of the compiler to look at the state, but simply to generate the appropriate code that will act in the new state, hence we directly eliminate such an abstraction:

when i:STA	≿ i.e	=>	e	[R2.2]
States passed as	parameters	are	either directly eliminat	ed if they are
simple variables; or	r associated	with	blocks of code if they an	e expressions:
when i:STA	e ₀ i	=>	e ₀	[R2.3]
when e:STA	e ₀ e	=>	{ e In COD; e ₀ }	[R2.4]
COD is an 'internal	l' domain of	inte	rest associated with code	structures. It
is defined in terms	of the 'user	r def:	ined' domains of interest	STA and ANS:
	COD	=	$[STA \rightarrow STA] + [STA \rightarrow ANS]]$	[D1]

In this case COD is used in a domain redefinition:

e In D = denotes a change of [D2] functionality

We will see later how where clauses look for this domain when a code structure is required.

Our discussion has and will continue to use the terms 'function' and

'functionality' with regard to the objects and properties of a denotational definition. Since our system of productions is manipulating the semantics concretely - that is as text - we see that it is committed to an algorithmic, rather than functional, reading of the specification. So, strictly, we should perhaps say 'procedure' for 'function' and 'data-type' for 'functionality'.

Why these transformations? Our interest is to discover the form and structure of a CGP. The semantic specification abstracts the machine configuration as a state to state function. For example:

s:S=[I* + 0*]. i:I. o:O. Read:[S ≥ [I x S]]. Write:[0 ≥ S ≥ S].

States Input Values Output Values

Under the above definitions, a concrete semantic expression might involve sub-expressions like: Read(s) or Write(o)s. The corresponding statements in the associated code generation procedures will not need the state variables. Under the restriction of one single state thread, the code CGP does not require that reference whatsoever. The semantic specification is abstracting up to a run-time activity; the CGP, however, up to a code generation stage. The two sub-expressions above, after the application of the R2.3 will look respectively as: Read() and Write(o).

Conditional: If a state variable is used as one of the branches of a doublearm conditional we can eliminate that branch turning it into a null block:when i:STA $e \ge e_1, i = > e \ge e_1, \{\}$ when i:STA $e \ge i, e_1 = > e \ge \{\}, e_1$ [R2.5]when i:STA $e \ge i, e_1 = > e \ge \{\}, e_1$ Note that (apart from the trivial case of both branches selecting the same

Snapshot 3.3: Algebraic Language of Flow Diagrams. State Analysis let C node be switchon type node into no change { case [Dummy]: {}; endcase by R2.1 (3.3.2)**case** [c₁;c₂]: C[c₁]; C[c₂]; endcase by R2.2, R2.3, R2.4 (3.3.3) case [If e Then c_1 Else c_2]: $E[e] \neq C[c_1], C[c_2];$ endcase by R2.2, R2.3/3 times (3.3.4)case [While e Do c1]: $Fix(\lambda c.E[e] \neq \{ C[c_1]; c \}, \{\}); endcase$ by R2.2, R2.3/twice, R2.4, R2.5 (3.3.5)case [c, Repeatwhile e]: Fix($\lambda c. \{ C[c_1]; E[e] \rightarrow c, \{\} \}$); endcase by R2.2/twice, R2.3/3 times, R2.4, R2.5 (3.3.6) let E node be switchon type node into no change { case [True]: TRUE; endcase by R2.2, R2.7 (3.3.8)case [False]: by R2.2, R2.7 FALSE; endcase (3.3.9)case [If e, Then e, Else e,]: $E[e_1] \neq E[e_2], E[e_3];$ endcase by R2.2, R2.3/3 times (3.3.10)

state variable) it can not be the case that both branches select a variable as this means maintaining a copy of the state.

Strict: A strict abstraction on the state implies that if that function is applied to an improper state the result should also be improper. This means that nothing can be said later about it. This is, in general, what happens when a program fails due to an improper use of the state. For example, when a command fails to terminate, it is up to the hardware to tell whether or not the state can be examined (through a dump for example). It seems then natural to assume that such a strict function does not concern the compiler, it is a hardware activity. To assume the contrary, means that appropriate instructions will have to be planted to 'run-time check' whether the state is proper or not. Such a check is too expensive to be done by software, we prefer to rely on the hardware. This implies a condition on the form of the input semantics; they are always strict on the state. So when the predefined WFF_s identifier <u>Strict</u> is explicitly used in a state abstraction we can directly eliminate it, defining:

when i:STA Strict(\i.e) => \i.e [R2.7]
Having defined the transformations that are required to eliminate the state,
we apply them to Snapshot 3.2 obtaining Snapshot 3.3.

3.2.3 Second Method - Structuring

The method outlined above is rather dangerous, in the sense that there is no check to detect that the 'single-thread' condition holds. Also as J. Stoy points out:

> "...The absence of the symbol s from the equations ... helps to emphasise that we must normally ensure that the 'same' state s is not used at two arbitrary separated points in a formula: that is to say, we must avoid defining the semantics so that implementation involves making a copy of the state of the machine, which is not economically feasible." [Sto77]-p231

Definitions: We first introduce two operators which were not discussed when describing the source metalanguage WFF_.

$$\begin{array}{rcl} & \underbrace{\bullet \circ} & : & \left[\left[\left[D \right> D_{1} \right] \times \left[D_{1} \right] \geq D_{2} \right] \right] \\ & f & : & \left[D \right> D_{1} \right] \\ & g & : & \left[D_{1} \right> D_{2} \right] \\ & d & : & D \\ & d & : & D \\ & (f \underline{\circ} g) d & = & g(fd) \end{array}$$

$$\begin{array}{rcl} & \left[D_{3} \right] \\ & \left[D_{3} \right] \\$$

This operator is composition. We prefer this form, because we wish to read equations from left to right. The other composition operator (o), forces one to visually scan twice doing two passes over an equation. Some authors (see [Ten76]) denote this form of composition with a semicolon, hence there is an association with the sequencing operator of some programming languages (like most ALGOL60 offspring). We will interpret this operator as sequencing under certain domain configurations.

<u>o</u> is normally used for commands which are only involved in a COD transformation. For expressions which produce a value (without side effects) we define:

• <u>+</u> •	:	$[[[D_1 \Rightarrow D]x[D \Rightarrow [D_1 \Rightarrow D_2]]] \Rightarrow [D_1 \Rightarrow D_2]]$ for any D, and D ₂ . But not DCSTA	
f	:	$[D_1 \rightarrow D]$ 1 2 $-$	
g	:	$[D^{1} \rightarrow [D_{1} \rightarrow D_{2}]]$	
d ₁	:	D ₁	
$(f \pm g)d_1$	-	g(fd ₁)d ₁	[D4]

D may not be a state, to avoid any state saving. \underline{o} and $\underline{+}$ eliminate the explicit use of the state of (3.1.3) to (3.1.6) and (3.1.10). For the rest we need two primitive functions, one is the identity function on the state which is a predefined WFF_s identifier, defined by:

Is :
$$[STA \rightarrow STA]$$

Is = Strict($\lambda i \cdot i$) [D5]

The second named <u>Load</u> replaces the use of <u>Strict</u> and it is defined as a primitive function in the semantic specification of Snapshot 3.4.

Our treatment of predefined functions (like <u>Is</u>) and defined primitives (like <u>Load</u>) leaves their algorithmic interpretation to the machine interface. This is a way to 'hide' implementation details and strategies, avoiding becoming too involved in crucial decisions. Compare this to the explicit use of the

(3.4.1)
(3.4.2)
(3.4.3)
(3.4.4)
(3.4.5)
(3.4.6)
(3.4.7)
a secolo
(3.4.8)
(3.4.9)
3.4.10)

Snapshot 3.4: Flow Diagrams State-Structured	Original	Specification	
--	----------	---------------	--

function Strict in the previous method. Hence, structuring with primitive functions is a way of preserving, throughout the transformation process, the meaning specified by the original semantic definition.

In Snapshot 3.4 we show the semantic equations for the same simple algebraic language of flow diagrams using the new operators and primitive functions. Note that the state is never explicitly used in any semantic equation. It is only used in the primitive functions or implicitly in the operators. This

helps to emphasise, but does not guarantee, the absence of expressions involving a copy of the state. In a language like this one a construction potentially producing side effects on the state, used in a construction which does not produce a side effect, may require copying the state. For example: suppose we embed a command, which has side effects, inside an expression, which has not, and define:

e ::= c "In" e | ... E[c "In" e]=C[c] <u>o</u> E[e].

Discovering this, and any other pathological case, means proving by induction that the state is consistently used in every possible subexpression. We are assuming, as a pre-condition on the input semantics, that such mixed expressions do not occur. We do not pursue this matter further. We now consider the necessary transformations for the structured version.

Identity: Firstly, a transformation for the explicit use of the identity function on the state.

[R2.8]

[R2.9]

Reversed Composition for Commands: Secondly, the association of \underline{o} with sequencing is made only in the case that the first expression produces a side effect (a COD function). However, if the first expression only reads the state ([STA>D]) then we associate \underline{o} with application:

when $e_0:[STA \rightarrow D_1] = e_0 \stackrel{o}{=} e_1 \implies C$ where $C = \{e_0; e_1\}$ if $D_1 = STA$ or $D_1 = ANS$ (i.e: $e_0:COD$) $C = e_1(e_0 \quad In \quad D_1)$ otherwise

<u>o</u> is a generic operator. In the particular instance of $\cdot \underline{o} \cdot :[[CODx[STA>D_2]]>[STA>D_2]]$ it can be understood as specifying the link between two blocks of code. This becomes even more evident when D_2 =STA or

 D_2 =ANS, in which case .o.:[[CODxCOD]>COD].

Composition for Expressions: Finally, \pm , which differs from <u>o</u> in the value that is passed across the boundary of the two blocks of code, hence it is associated with application:

 $e_{0} + e_{1} => (e_{1} \text{ In } [D \neq D_{2}])(e_{0} \text{ In } D)$ when for any domain D and $D_{2} e_{0}: [STA \neq D] \text{ and } e_{1}: [D \neq [STA \neq D_{2}]]$ [R2.10]

<u>+</u> is a generic operator, in the particular instance of \cdot <u>+</u> \cdot :[[[STA>D]x[D>[STA>D₂]]]>[STA>D₂]] it links two blocks of code; The first block produces a value which is in turn passed to the second.

As an example, here is how we analyse the while-loop:

```
State Elimination:

Fix(\lambda c. E[e] s \ge c(C[c_1]s), s)

Fix(\lambda c. \lambda s. E[e] s \ge c(C[c_1]s), s)

Fix(\lambda c. \lambda s. E[e] s \ge \{C[c_1]s; c \}, s)

Fix(\lambda c. \lambda s. E[e] \ge \{C[c_1]; c \}, s)

Fix(\lambda c. \lambda s. E[e] \ge \{C[c_1]; c \}, \{\})

Fix(\lambda c. E[e] \ge \{C[c_1]; c \}, \{\})
```

Structuring the State: Fix($\lambda c.(E[e] + \lambda t.t \neq C[c_1] o c, Is$)) Fix($\lambda c.(E[e] + \lambda t.t \neq C[c_1] o c, \{\}$)) Fix($\lambda c.(E[e] + \lambda t.t \neq C[c_1]; c, \{\}$)) Fix($\lambda c.(\lambda t.t \neq C[c_1]; c, \{\})$)(E[e])) From (3.1.5) By R1.2-(3.2.5) By R2.4 By R2.3/twice By R2.5 By R2.2-(3.3.5)

From (3.4.5) By R2.8 By R2.9 By R2.10-(3.5.5)

An implicit domain transformation, which is not shown in our snapshots, is the change of functionality of all domains (data-types) involving a STA or ANS. For example: W=[S>T] changes to W'=T. In effect the state 'disappears' or is replaced by COD, like in: C=[S>S] changed to C'=COD. This can only by done under the pre-condition which rules out semantics involving copies of the state. Note that such changes are necessary to allow the transformation process to continue discovering code generation actions. For example, what

the functionality of the sub-expressions Read() and Write(o), defined in is section 3.2.2? We can but not choose to say that Read: $[S \Rightarrow [I \times S]]$ and Write: $[0 \ge S \ge S]$ any longer. To be consistent we have to associate them with the new domains (data types): Read: $[[] \rightarrow [I \times COD]]$ and Write: $[0 \Rightarrow COD]$, which are redefining Read as the code generation procedure with no parameters which should plant code to read a value, and Write as another one to plant code to write one. In fact Read is not in that domain, our system will redefine it as Read: I, and the Destination Analysis (to be described below) will transform Read() to Read(reg) with Read: [REG > COD] indicating that Read is a procedure which generates code to read a value into the destination indicated by its parameter.

In Snapshot 3.5 we show the result of applying to the structured version of our current example language all transformations corresponding to the Normalisation and State Analysis. Note that the only differences between the unstructured Snapshot 3.3 and the structured Snapshot 3.5 are the absence of the function <u>Load</u> in the former and a number of extra X-abstractions in the latter. We could define a transformation to perform beta-reduction; in this case it is possible. But in some other cases we can not do such a reduction. In the Destination Analysis below, we will explain why we can not perform beta-reduction, and we also comment on the significance of the differences.

- 42 -

Snapshot 3.5: Flow Diagrams Sta	te-Structured.	State Analyo	ic
let C node be switchon type node into	to beracturea.	by R1.1	(351)
{ case [Dummy]:		<i>b</i>) A1.1	(3.3.1)
{}; endcase	ł	y R1.1, R2.8	(3.5.2)
case [c1;c2]:			
C[c ₁]; C[c ₂]; endcase	b	y R1.1, R2.9	(3.5.3)
case [If e Then c, Else c,]:			
$(Xt \cdot t \neq C[c_1], C[c_2])(E[e]);$ endcase	Ъу	R1.1, R2.10	(3.5.4)
case [While e Do c ₁]: Fix($(x, (x, t))$ Clc 1. c) (1)(F(c))	\		
	; endcase		
	by RI.I, R2.8,	R2.9, R2.10	(3.5.5)
case [c ₁ Repeatwhile e]: Fix($\lambda c.(\lambda t.t \neq c, \{\}) \{ C[c_1]; E[e] \}$);	endcase		
1	by R1.1, R2.8,	R2.9, R2.10	(3.5.6)
let E node be switchon type^node into		by R1.1	(3.5.7)
Load TRUE: endcase			
		by RI.1	(3.5.8)
case [False]:			
Load FALSE; endcase		by R1.1	(3.5.9)
case [If e Then e Else e]:			
<pre>{ / / / / / / / / / / / / / / / / / / /</pre>	by	R1.1, R2.10	(3.5.10)

3.3 Syntactic Transformations

3.3.1 Proceduring

Firstly, the functions are curried, but procedures are parametric. According to the Oxford school's tradition, functions are defined as curried as possible. There is no reason why they could not be defined by equivalent uncurried functions. In fact, the DS of the programming language [ADA80] is, from the start in this form.

Why do we have to un-curry? If we wish to give an algorithmic interpretation to the concrete representation of semantic functions, then it seems natural to use a form, which is in line with those defined in our target programming language. For this reason we introduce the following conversions:

let
$$vi_1 \dots i_n$$
 be $C \implies$ let $v(i_1, \dots, i_n)$ be C [R3.1]
 $e_0 e_1 \dots e_n \implies e_0(e_1, \dots, e_n)$ [R3.2]

3.3.2 Applied Occurrence of Abstractions

Secondly, the equivalence between the application of lambda abstractions and BCPL's let declarations, is formalised as follows:

(\i.e)(e ₁) =>	{ let i=e,; e }	[R3.3]

 $(\lambda_{i,e})(e_1)(e_2) \implies \{ let i=e_1; e(e_2) \}$ [R3.4]

when not i:COD (λ i.e){C; e₁} => C; { let i=e₁; e } [R3.5] Note that if the condition of R3.5 fails, then either R3.3 or R3.4 is applied. The following shows the syntactic transformations for the whileloop as left by the State Analysis:

State Elimination: $Fix(\mathbf{c} \cdot \mathbf{E}[e] \neq \{ C[c,]; c \}, \{\})$	From (3.3.5)
$Fix(x_{c},E([e]) \neq \{ C([c_1]); c \}, \{\})$	By R3.2/3 times
Structuring the State:	
$Fix((t,t) \in C[c_1]; c_1)(E[e]))$	From (3.5.5)
Fix($t.t \neq C([c_1]); c_{,})(E([e]))$	By R3.2/3 times
Fix($c.{let t=E([e]); t \in C([c_1]); c},{})$	By R3.3-(3.6.5)

Note that R3.2 is applied regardless of the brackets which are printed because of precedence reasons. So a e_0e_1 construct of WFF_s like Fix(e), is transformed by R3.2 to the same Fix(e), but now a E(P)A of WFF_t. Also note that ';' has lower precedence that anything else.

Before embarking on the semantic transformations, let us observe that the result of transformations R3.1 to R3.5, as described in Snapshot 3.6, is still a Standard Denotational Specification, written in an un-curried form with (more or less) the original domains. Alternatively, it can be regarded

Snapshot 3.6: Flow Diagrams State-Struc	ctured. Syntactic Trans	sformations
<pre>{ case [Dummy]:</pre>	by	R3.1 (3.6. no chan
<pre>case [c₁;c₂]: C([c₁]); C([c₂]); endcase</pre>	by R3.2/to	wice (3.6.
case [If e Then c_1 Else c_2]: { let t = E([e]); t > C([c_1]), C([c_1]) }	: endcase	
	by R3.2/3 times, 1	R3.3 (3.6.
case [While e Do c_1]: Fix($\lambda c \cdot \{ \text{ let } t = E([e]); t \neq C([c_1]); c \in \mathbb{C}([c_1]) \}$,{} }); endcase	
Personal Inc.	by R3.2/3 times, 1	3.3 (3.6.
<pre>case [c_ Repeatwhile e]: Fix()c.{0 C([c_1]); { let t = E([e]); }</pre>	t>c,{} }0); endcase by R3.2/3 times, 1	3.5 (3.6.
<pre>let E(node) be switchon type^node into [case [True]:</pre>	by I	3.1 (3.6.
Load(TRUE); endcase	by H	3.2 (3.6.
<pre>case [False]: Load(FALSE); endcase</pre>	by I	3.2 (3.6.
case [If e_1 Then e_2 Else e_3]: { let t = E([e_1]); t>E([e_2]),E([e_3])	}; endcase	
and the constant of the state o	by R3.2/3 times, H	(3.3 (3.6.1)

as something akin to store semantics [MaS76]. We could have started with a version that looked similar to this one, like P.Mosses's DSL [Mos79], and then derived the store semantics applying the mechanism developed by [MaS76] as described in [Sto77]. To avoid the need of presenting yet another mathematical metalanguage, we preferred not to do so, starting with the version in [Sto77].

Recently, R. Sethi introduced PLUMB programs [Set82], which are also something akin to store semantics. In PLUMB the state is never explicitly written in any semantic equation, this is done by means of a mechanism called a 'pipe', which extends function composition. R.Sethi has shown that 'pipes' are suitable to express the control flow aspects of sequential languages. In this sense, if one starts directly with a store semantics then our State Analysis is not required.

The State Analysis has been applied prior to the Syntactic Transformations only for convenience, because it is easier to eliminate the application of a curried function than to eliminate the parameters of an un-curried procedure. In this respect, the State Analysis is part of the semantic transformations which we describe now.

3.4 Semantic Transformations

What can we say now about this specification (Snapshot 3.6)? It looks very much like an <u>interpreter</u>. In fact we can regard it as an definitional interpreter (in the sense of [Rey72]) written in a metalanguage which looks as much like a programming language as a mathematical system of equations. If we are able to discover, from the specification, something more concrete about the way that semantic objects are handled, then will be able to say something about how we can implement a <u>compiler</u> for the language in question. The difference between such an interpreter and a compiler, is that the latter is characterised by a process of translation, a generation of an intermediate or final representation, i.e: the target code. It actually does not matter, whether this code is later, either run on the hardware of a particular machine, or if it is interpreted by software. The CGP is the primary object of our analysis. So, what are the characteristics of this code?

- 46 -

3.4.1 Destination Analysis

Let us consider the form of the specification that manages intermediate values, obtained while evaluating sub-expressions. The interpreter seems to hold these values in variables, but the CGP will not see the values, it is only at run time when values will be produced, and handled by the code. The compiler's activity is to define where at run time, these values will be kept. Hence, here is our first semantic transformation:

when
$$v(D):REG$$

let $v(D)$ be $C \mid \Rightarrow \mid$ let $v(D).dest.(reg)$ In COD [R5.1]

REG is a domain of interest. In the example language that we are considering in this section REG=W and W=[S \Rightarrow T]. After the State Analysis W'=T so that now REG=W'=T. The transformation above indicates that every function, producing a registered value (in REG) as a result, will now have an indication for the destination of the resultant value. The variable <u>reg</u> is used to keep a description of the destination but there is no indication of what this destination is. It might be either a register descriptor or a level+offset, describing a position in an activation record. Note that expressions that were in [D \Rightarrow REG] (any D), now are in [[D x REG] \Rightarrow COD].

We also need the counterpart to R5.1:

let v(D) be C => let v(D) be [first.reg/reg]C [R5.2]
when not v(D):REG

Where <u>first.reg</u> is either a free constant or a free variable, containing a description of a place for run time temporary values (respectively the first available register or the start of the corresponding activation record's workspace).

Function calls are converted in two ways depending on the context in which they appear. If the result of a function is immediately bound to a variable then we make a register name out of the variable name. Otherwise, the destination is the same variable which was defined in R5.1: e(P) => when e(P):REG e(P).dest.(reg) In COD [R5.3] { let i=e(P); C } | => | { e(P).dest.(i) In COD; C } EG _____ | rename $i=>(i=a_k)>reg+k$, reg [R5.4]

when e(P):REG

Note that in R5.4, the destination reg+k is made out of the decoration 'k' of the identifiers name. The effect of this is that the register allocation depends on the decoration of names (with digits) of the original specification. It might be argued that this is not desirable; that the transformation rules should find out which registers must be allocated, instead of forcing such issues to depend on the textual form of the semantic However, this method allows the control of register specification. allocation at the level of the semantic specification. We have opted for this general approach, allowing 'user control' of register allocation. This is why, our semantic equations contain some explicit abstractions which seem not to be necessary. In the introductory example (section 2.4), the equation for an application in the Lambda Calculus (2.1.4) is expressed as: $E[e_1e_2]p=(\lambda ee' \cdot (e|F)e')(E[e_1]p)(E[e_2]p).$

Instead of the equivalent form: $E[e_1e_2]p=((E[e_1]p)|F)(E[e_2]p)$.

Because of this 'user controlled' register allocation technique, we can not apply beta-reduction (see section 3.2.3 above). Another reason for not applying beta-reduction, is that the applied occurrence of abstractions, transformed as let declarations, helps to avoid re-evaluation. In general, the argument to an applied occurrence of an abstraction will be an expression with corresponding code generation process. We do not wish to substitute such an expression since this might result in a duplication of the same code generation text, or worst even, a duplication of the same generated code. The reader must remember that we are generating the text of a code generator expressed as procedures written in a programming language, we are not 'implementing' the lambda-calculus by its reduction rules. The only reason for beta-reduction would be to reduce the length of expressions; but this reduction must not be to the detriment of the target CGP.

Both these issues, variable naming to allow register allocation and explicit abstractions, are implementation issues which have been pushed up to the level of a Standard Denotational Specification. We believe that further analysis, could show that these two features could be automated, and hence not necessarily explicitly expressed at that level, and that the relevant information could be extracted from a truly Standard Specification without writing semantic equations with this sort of implementation detail. However in Chapter 7, we explore the possibility of abstracting more important issues at the level of a Semantic Specification, through a technique which we call Implementation Denotational Semantics.

Let us return now to the Destination Analysis. If a function call involves other calls amongst its parameters which produce values (in REG), then as a result of R5.3 or R5.4, these values are indicated by a .dest.(E) construct. In this case we make a sequence of statements, replacing the old parameter by its destination register.

- 49 -

By symmetry we also define:

e(P, i) | = | e(P).dest.(i) In COD [R5.6] when i:REG and P not null | |

Next, if we consider the language with the state written explicitly, as shown in Snapshot 3.3, we need to load variables that appear either as statements like in (3.3.8) and (3.3.9) or in a conditional's branch (not in this example):

		$\{C_0; i; C_1\}^{-1}$	=>	$\{C_0; C; C_1\}$	
		$e_0 \neq i, e_2$	=>	$e_0 \neq C, e_2$	[R5.7]
when	i:REG and	$e_0 \neq e_1$, i not 1:COD	=> 	$e_0 \ge e_1, C$ where C = trans.load(DOM(i), i)	In REG
		DOM DOM(e:d)	:	Exp≯EXP E:EXP	[D6]
		2011(014)	100 0005		

where E = d if not $d=[D_1 + \dots + D_n]$ for any D_i and not e:LOC E = domain.of(e) otherwise

The primitive operation <u>trans.load</u>, will be used to indicate that a particular value must be loaded into its destination. The reason for the domain definition indicated by In, is to allow R5.3 or R5.4 to supply a destination. For type checking purposes <u>trans.load</u> associates a type with the destination. This type must be given as the first parameter. If the type associated with the load is known at the moment of generation of the CGP then the function <u>DOM</u> returns an identifier, otherwise it returns the expression <u>domain.of(e)</u> so that the CGP would be able to determine the particular instance of a type while generating code. Types are unknown when they belong to an union domain or when the operation is to load the contents of a location. Section 4.3.3 explores other type checking issues.

The actual code planted to load a value is not defined, it is up to the

interpretation of <u>trans.load</u> to define the precise code. For example, in this simple example language, the only values that might be loaded are the constants <u>TRUE</u> and <u>FALSE</u>. Using DEC-10 instructions and associating to these constants respectively the values minus one and zero, trans.load(D..T, TRUE).dest.(reg) might plant:

interpreting reg as a fast register (reg=AC) an invocation record word (reg=#off) SETO AC,0 SETOM 0,#off(BAS)

and trans.load(D..T, FALSE).dest.(reg) will plant similar code using the instruction SETZ.

Order of Application: In R5.2, the expression [first.reg/reg]C does not make sense unless we wait until all <u>regs</u> have been introduced by other transformation rules. We solve this by applying the substitution once all rules have been applied. Alternatively a substitution can be interpreted as a call by need, i.e: whenever a rule inserts a <u>reg</u> within C, it is immediately substituted by <u>first.reg</u>.

The order of application of rules is not determined. So the transformation process can be understood as a non-deterministic process. However, in a particular implementation, one can apply a specific order. For example, we have opted for a syntax directed transformation, where the order of analysis is directed by the structure of the abstract syntax in a left to right manner.

Applying the Destination Analysis rules results in Snapshot 3.7.

Snapshot 3.7: Flow Diagrams State-Structured. Destination Analysis let C(node) be switchon type node into no change { case [Dummy]: no change case [c1;c2]: no change case [If e Then c, Else c,]: E([e]).dest.(first.reg); first.reg>C([c1]),C([c2]); endcase by R5.2, R5.4 (3.7.4)case [While e Do c,]: Fix(\c.{ E([e]).dest.(first.reg); first.reg C([c,]); c,{} }); endcase by R5.2, R5.4 (3.7.5)case [c, Repeatwhile e]: Fix(\c.{ C([c1]); E([e]).dest.(first.reg); first.reg>c,{} }); endcase by R5.2, R5.4 (3.7.6)let E(node).dest.(reg) be switchon type node into (3.7.7)by R5.1 { case [True]: Load(TRUE).dest.(reg); endcase by R5.3 (3.7.8)case [False]: Load(FALSE).dest.(reg); endcase by R5.3 (3.7.9)case [If e, Then e, Else e,]: $E([e_1]).dest.(reg); reg \in ([e_2]).dest.(reg), E([e_3]).dest.(reg); endcase$ by R5.3/twice, R5.4 (3.7.10)

3.4.2 Continuation Analysis

In this example language, there are no continuations, nevertheless in terms of code generation, there are certain parts where jumps, to and from different parts of the code will be produced. We will analyse the following areas: variables as statements, conditionals, and the minimal fix point finder.

Variables as statements: A variable denoting a code function might stand in a block as a statement. This happened for example in the equation for a while-loop (3.5.5), where R2.9 transformed the composition operator \underline{o} into a sequence of statements. Also, a variable denoting a code function might stand in a conditional's branch, like in (3.7.6). These code variables are interpreted as a need to jump:

when i:COD

$$\begin{cases} C_{0}; i; C_{1} \} | => | - \{C_{0}; C; C_{1} \} \\ or & | & | & or \\ e_{0} \Rightarrow i, e_{2} | => | e_{0} \Rightarrow C, e_{2} \\ or & | & | & or \\ e_{0} \Rightarrow e_{1}, i | => | e_{0} \Rightarrow e_{1}, C \\ - | & | & where C = trans.jump.to(i) \end{cases}$$
[R6.1]

Conditionals: We wish to evaluate the boolean part in a particular destination (if it is not already a destination variable), and then check the result, planting appropriate instructions to select the corresponding path.

What is the meaning of <u>forward</u> and <u>fix.here</u>? Every time a forward reference is made a CGP will have to take some actions. Different techniques are possible, but at this stage, one does not wish to be committed to any particular one. The primitives <u>forward</u> and <u>fix.here</u>, like all primitive procedures and function introduced by the transformation process, can have different interpretations, one can choose any of the well known techniques to achieve the desired effect. For example: if one wishes to use a chaining mechanism, these operations can be interpreted respectively as <u>new.chain</u> and <u>fix.chain</u>. Alternatively, if one wishes to rely on the activity of a loader, they can be interpreted as <u>new.label</u> and <u>trans.label</u>. The parameter COD to <u>forward</u> is supplied for type checking (compile or run-time) purposes.

This transformation rule is the most general way of transforming the conditional, but by looking at its particular form, one can optimise the CGP. For example, in (3.7.5) and (3.7.6), the false part is a null block {}, in this case some of the right hand side statements are unnecessary. Also, in (3.7.6) the true part was a simple variable and a continuation, and as a result of R6.1 it would now be an unconditional jump trans.jump.to. Instead of jumping to fcond.code when the boolean part evaluates to false, we can reverse the test-and-jump replacing the original trans.jump.if.false by trans.jump.if.true. When the false part is an unconditional jump, we can replace the fcond.code of trans.jump.if.false by the parameter of the unconditional. Finally, if the true branch consists of an expression involving continuations (like the examples of Chapter 5), then there is no need for the forward-fix and jump to econd.code constructions. These, and other similar observations, are formalised as follows:

when

 $e_0 \neq e_1, e_2 \Rightarrow$ (E0IsDes or E0IsIde)² and i:REG [R6.2] $C = \{ C_1; C_2; C_3; C_4; C_5; C_6; C_7; C_8; C_9 \}$ $C_1 = \text{NoEndCo} \Rightarrow \text{null}, \text{let econd.code} = \text{forward(COD)}$ where = NoFalse > null, let fcond.code = forward(COD) C $C^2_{C^3_3}$ = EOIsIde > null, e, = JumpRut(i, FalseCo) 4 C_5^4 = Reverse \Rightarrow null, e C = NoEndCo > null, trans.jump.to(econd.code) c.6 = NoFalse > null, fix.here(fcond.code) C = E2IsJmp > null, e₂ $C_0^8 = NoEndCo \Rightarrow null, fix.here(econd.code)$ $\begin{array}{l} \texttt{EOIsDes} = \texttt{e}_{0-}\texttt{=}\texttt{e}(\texttt{P}) \cdot \texttt{dest.}(\texttt{i}) \texttt{A} \\ \texttt{EOIsIde} = \texttt{e}_{0-}\texttt{i} \\ \texttt{EIIsJmp} = \texttt{e}_{1-}\texttt{trans.}\texttt{jump.to}(\texttt{i}_{1}) \\ \texttt{EOIsIde} = \texttt{e}_{1-}\texttt{trans.}\texttt{jump.to}(\texttt{i}_{1}) \end{array}$ $E2IsJmp = e_2 = trans.jump.to(i_2)$ $E2IsNul = e_{2}^{2} = \{\}$ Reverse = EZIsNul and ElIsJmp NoFalse = Reverse or E2IsJmp NoEndCo = E2IsNul or E2IsJmp or WillJump(e,) JumpRut = Reverse > trans.jump.if.true, trans.jump.if.false FalseCo = Reverse \neq i₁, E2IsJmp \neq i₂, fcond.code HasCont(e)=TRUE if e contains continuations which will jump HasCont(e)=FALSE otherwise

There is still more room for improvement. For example we have not considered what happens when the true part is a null block {}, but this case never happens in our examples so we will not pursue this further. Other improvements relate to those forms of tests which can be translated with skip instructions. We will wait until the examples require this feature.

Fix: The paradoxical combinator Y was introduced by J. Curry [Cur58] and was discussed in relation to an operational semantics by P. Landin [Lan65]. In relation to a DS, C. Strachey, in an early paper pointed out:

"...it does the same job as LABEL in LISP. Thus (LABEL,c,(LAMBDA, (X), (S))) is equivalent to Fix(\c.\x.S). [Str66]-p213

The denotation of Y is the function $\operatorname{Fix}=\lambda F \cdot |_{n} F^{n}(\operatorname{Bot})$, <u>Fix</u>, a predefined WFF_s identifier, it is used both in (3.7.5) and (3.7.6). It is a generic function whose interpretation depends on its functionality. In this case it is used in expressions of the form: $\operatorname{Fix}(\lambda c \cdot c_{1})$, hence its functionality belongs to $[\operatorname{COD}>\operatorname{COD}]$. $\operatorname{Fix}(\lambda c \cdot c_{1})$ denotates the COD function denoted by c_{1} , with c bound to the same. In implementation terms this means that $\operatorname{Fix}(\lambda c \cdot c_{1})$ is denoting the instruction sequence forming the code of c_{1} , with c bound to the same. The following transformation will implement this observation:

when i:COD
$$Fix(i.e) | \Rightarrow | \{ let i = here(COD); e \}$$
 [R6.3]
| | rename i=>restart.code

In a similar fashion to <u>forward</u> and <u>fix.here</u>, the interpretation of <u>here</u> is left open to implementation choice. If one wishes to use either a chaining mechanism, or rely on the activity of a loader, then it can be interpreted respectively as this.program.counter or <u>trans.label</u>

Applying these transformations we obtain Snapshot 3.8.

```
Snapshot 3.8: Flow Diagrams State-Structured. Continuation Analysis
let C(node) be switchon type node into
                                                                       no change
 { case [Dummy]:
                                                                       no change
   case [c1;c2]:
                                                                       no change
  case [If e Then c_1 Else c_2]:
    E([e]).dest.(first.reg)
     { let econd.code = forward(COD)
       let fcond.code = forward(COD)
       trans.jump.if.false(first.reg, fcond.code)
       C([c,])
       trans.jump.to(econd.code)
       fix.here(fcond.code)
       C([c,])
       fix.here(econd.code)
    }; endcase
                                                               by R6.2
                                                                         (3.8.4)
  case [While e Do c1]:
    {0 let restart.code = here(COD)
       E([e]).dest.(first.reg)
       { let fcond.code = forward(COD)
          trans.jump.if.false(first.reg, fcond.code)
         C([c,])
         trans.jump.to(restart.code)
         fix.here(fcond.code)
    }0; endcase
                                                  by R6.1, R6.2, R6.3
                                                                         (3.8.5)
  case [c_ Repeatwhile e]:
   { let restart.code = here(COD)
      C([c,])
      E([e]).dest.(first.reg)
      trans.jump.if.true(first.reg, restart.code)
    }; endcase
                                                  by R6.1, R6.2, R6.3 (3.8.6)
}
let E(node).dest.(reg) be switchon type node into
                                                                       no change
{ case [True]:
                                                                       no change
  case [False]:
                                                                       no change
  case [If e, Then e, Else e3]:
    E([e,]).dest.(reg)
    { let econd.code = forward(COD)
      let fcond.code = forward(COD)
      trans.jump.if.false(reg, fcond.code)
      E([e<sub>2</sub>]).dest.(reg)
      trans.jump.to(econd.code)
      fix.here(fcond.code)
      E([e<sub>2</sub>]).dest.(reg)
      fix.here(econd.code)
    }; endcase
                                                              by R6.2 (3.8.10)
```

Diapshot J.J. Flow Diagrams with Side E	ffects. Original Specification
Semantic Domain	Modifications to Snapshot 3.4
$\overline{\mathbf{w}:\mathbf{W}=[\mathbf{S} \neq [\mathbf{T} \times \mathbf{S}]]}.$	expression values
Semantic Primitive	
Load: $[T \rightarrow W]$.	
Load=	
<pre>ht.Strict(ls.<t,s>).</t,s></pre>	
Semantic Equations	
CITE e Then a Flag a la	
$\mathbf{E}[\mathbf{e}] \stackrel{*}{=} \mathbf{\lambda} \mathbf{t} \cdot \mathbf{t} \neq \mathbf{C}[\mathbf{c}_1], \mathbf{C}[\mathbf{c}_2].$	(3.9.1)
C[While e Do c,]=	
$Fix\{ c \cdot \{E[e] \stackrel{l_{\star}}{\times} t \cdot t \neq C[c_1] o c, Is \} \}.$	(3.9.2)
C[c ₁ Repeatwhile e]=	
$FIx{xc.{C[c_1] o E[e] * }t.t > c, Is}.$	(3.9.3)
E[If e ₁ Then e ₂ Else e ₂]=	
$E[e_1] \stackrel{*}{} t \cdot t \neq E[e_2], E[e_3].$	(3.9.4)

3.5 Side effects

Consider now a similar language with side effects. It is based on [Sto77], table 9.3. In Snapshot 3.9, we reproduce only those parts that differ from the specification of Snapshot 3.4. Note that the redefinition of W, results in every \pm being replaced by \pm . Except for the new equation for Load, these replacements are the only modifications to the original semantic equations, confirming once more that structuring the state with appropriate operators leads to structured equations. We have to analyse this new operator at the level of the State Analysis.

3.5.1 Reversed Star

The <u>*</u> operator, is the reverse of the star operator used by C. Strachey [Str73] to abstract the meaning of a conditional:

- 57 -

· <u>*</u> ·	•	$[[D_1 \rightarrow [DxD_2]]x[D \rightarrow [D_2 \rightarrow D_3]] \rightarrow [D_1 \rightarrow D_3]]$ for any D = D and D = But not DCSTA
f	:	$[D, \rightarrow [DxD_0]]$
g	:	$[D \Rightarrow [D_2 \Rightarrow D_2^2]]$
d	:	D 2 5 external statement
d	:	D ₁
d ₂		D_2^1
$(f \pm g)d_1^2$	=	gdd_2 where $\langle d, d_2 \rangle = fd_1$ [D7]

D may not be a state, to avoid any state saving. As for the composition operator, we prefer the reversed form that allows us to read equation from left to right. This operator is used for expressions with side effects. Expressions produce, in general, a value and the side affect is a modification of the state. As already explained in section 3.2.1, we are only allowing one copy of the state at any given time. This means that in $e^{\pm}e'$, \pm is carrying information which is not relevant for the process of code generation. It is the code generated by e and e' that will carry out this activity, and it will follow the same sequence of actions specified by the appropriate transformation of e and e'.

As usual, we formalise a transformation with a conversion rule:

when for any domains $D_{1}^{e_{0}} \stackrel{*}{\xrightarrow{}} e_{1}^{e_{1}} = > (e_{0} \text{ In } [D_{1} \Rightarrow D]) \underline{o}(e_{1} \text{ In } [D \Rightarrow D_{3}]) [R2.11]$ when for any domains $D_{1}^{e_{1}} \stackrel{*}{\xrightarrow{}} D_{1}^{e_{1}} = [D_{1} \Rightarrow [DxSTA]] \text{ and } e_{1}^{e_{1}} : [D \Rightarrow [STA \Rightarrow D_{3}]]$

<u>*</u> is a generic operator, in the particular instance of <u>*</u>.:[$[D_1 \Rightarrow [DxSTA]]x[D \Rightarrow [STA \Rightarrow D_3]] \Rightarrow [D_1 \Rightarrow D_3]$] it links two blocks of code. The first block produces a side effect and a value which is passed to the second block. In most cases $D_1 = STA$ and $D_3 = STA$ or $D_3 = ANS$, in which case it will be trapped by R2.9. The rest of the transformations are the same as those for the same language without side effects, and the final version does not differ from the corresponding version for that language. This is to be expected since, so far, the language has no explicit expressions with side

- 58 -
effects. For example, this is how we transform the while loop:

while loop with side effects:	
Fix($\lambda c.(E[e] * \lambda t.t > C[c_1] o c, Is)$)	From (3.9.2)
$Fix(\mathcal{R}C_{\bullet}(E[e] \times \mathcal{X}t_{\bullet}t_{\bullet}C[c_{1}] \circ c_{\bullet}(\{\}))$	By R2.8
$Fix(xc.(E[e] * xt.t) { C[c_1]; c_1, {}))$	By R2.9
$Fix(xc.(E[e] o xt.t) \{ C[c_1]; c_1\}, \{\}))$	By R2.11
$FIX(xc.(xt.t) \{ C[c_1]; c_1, \{\})(E[e]))$	By R2.9

3.6 The Store

In order to analyse the relation between semantic equations producing side effects and the corresponding procedures to generate code, we now define the store as a function from identifiers to values. We add identifiers to the syntactic categories of expressions, and assignments for generality both in commands and expressions. Locations are introduced in chapter 7 where the example language with environments provides the appropriate block structure. Firstly, we consider the semantic equations of Snapshot 3.10 where the state is explicitly used. Secondly, we will rewrite them by structuring the state. We require new transformations only for the former and at the level of the State Analysis.

3.6.1 Updating

A modification of the state occurs in both equations for assignment. The store is modified in such a way that after the assignment, identifiers denote the result of the right hand side evaluation. In the semantic equations this indicated by the [/] construction, the code generator requires a procedure trans.update which will generate a move to memory: when i:STA $i[e_1/e_2] = trans.update(e_1, e_2)$ [R2.12]

Snapshot 3.10: The Store	State-Unstructured. Original Specification
1	Extensions to Snapshot 3.9
Syntax	
i:Ide.	identifiers
c ::= i:=e	and the second
e ::= i i:=e ₁	
Compatible	
Semantics	machine states
	(3 10 1)
$C:[Com \neq C]$.	(3:10:1)
C[i:=e]=	
E[e] * ts.s[t/[i]].	(3.10.2)
$E:[Exp \rightarrow W].$	(3.10.3)
E[i]=	(2.10.1)
Strict()s. <s[i],s>).</s[i],s>	(3.10.4)
E[i:=e]=	
E[e] * ts.(t.s[t/[i]]).	(3.10.5)
	in the second

3.6.2 Loading

Loading a value from the store is indicated by an application of the state. This requires again the primitive procedure trans.load:

when i:STA i(e) => trans.load(DOM(e), e) In REG [R2.13] 3.6.3 Tuples

In all our examples, tuples have length of two. To simplify the analysis, we will consider only tuples of this length. In this unstructured version, the state is explicitly used in tuples, both as a single variable in (3.10.4) and as an expression in (3.10.5). In the former case, we simple eliminate such a variable, since, like the identity function of the state, it does not convey any code generation information. In the latter, since only one copy of the state is allowed, side effects can not occur in both tuple expressions, so we can impose a particular (left to right) order of evaluation, transforming the tuple to a sequence of two statements:

when i:STA $\langle e_0, i \rangle \Rightarrow e_0$ [R2.14]

- 61 -

```
let C(node) be switchon type node into
                                                     by R1.1, R3.1 (3.11.1)
{ case [i:=e]:
    E([e]).dest.(first.reg); trans.update([i], first.reg); endcase
    by R1.1, R1.2, R2.2, R2.9, R2.11, R2.12, R3.2/twice, R3.3, R5.2, R5.4
    R5.6
                                                                     (3.11.2)
 case ...
}
let E(node).dest.(reg) be switchon type node into
                                               by R1.1, R3.1, R5.1 (3.11.3)
{ case [i]:
    trans.load(Ide, [i]).dest.(reg); endcase
                           by R1.1, R2.2, R2.7, R2.13, R2.14, R5.3 (3.11.4)
 case [i:=e,]:
   E([e,]).dest.(reg)
   trans.load(domain.of(reg), reg).dest.(reg)
    trans.update([i], reg); endcase
   by R1.1, R1.2, R2.2, R2.9, R2.11, R2.12, R2.15, R3.2/twice, R3.3, R5.3
   R5.4, R5.6, R5.7
                                                                     (3.11.5)
 case ...
```

when e_1 :STA $\langle e_0, e_1 \rangle \Rightarrow \{e_0; e_1\}$ [R2.15] Applying these transformations and all those required to bring it to the level of the Destination Analysis we obtain Snapshot 3.11.

3.7 Structuring

If we now express the semantic equations without explicit use of the state, rewriting the equations from Snapshot 3.10 to those in Snapshot 3.12, we find that this time, there is no need to define any new transformation rule. The problem is that, now, one has to supply the code for the primitives <u>Update</u> and <u>Conts</u>, which can easily be done with the equivalent procedures <u>trans.update</u> and <u>trans.load</u> supplied by our system. The corresponding generation, also at the level of the Destination Analysis, is quite similar to the one of the unstructured version, as can be seen in Snapshot 3.13.

	Modifications to Snapshot 3.10
Semantic Primitives	
Update: [Ide \rightarrow T \rightarrow C].	
Update[i]ts=	
s[t/[i]].	
Conts:[Ide → W].	
Conts[i]s=	
<s[i],s>.</s[i],s>	
Semantic Equations	
$C:[Com \neq C].$	(3.12.1)
C[i:=e]=	
E[e] <u>*</u> Update[i].	(3.12.2)
$E:[Exp \rightarrow W]$.	(3.12.3)
E[i]=	
Conts[i].	(3.12.4)
E[i:=e,]=	
E[e,] * ht.(Update[i]t o Load t).	(3.12.5)

```
Snapshot 3.13: The Store State-Structured. Destination Analysis
                                                     by R1.1, R3.1 (3.13.1)
let C(node) be switchon type node into
{ case [i:=e]:
    E([e]).dest.(first.reg); Update([i]).dest.(first.reg); endcase
                by R1.1, R2.9, R2.11, R3.2/twice, R5.2, R5.3, R5.5 (3.13.2)
 case ...
}
let E(node).dest.(reg) be switchon type^node into
                                               by R1.1, R3.1, R5.1 (3.13.3)
{ case [i]:
    Conts([i]).dest.(reg); endcase
                                             by R1.1, R3.2, R5.3 (3.13.4)
 case [i:=e,]:
    E([e,]).dest.(reg); Update([i]).dest.(reg); Load(reg).dest.(reg)
   endcase
   by R1.1, R2.9/twice, R2.11, R3.2/3 times, R3.3, R5.3, R5.4, R5.6
                                                                    (3.13.5)
  case ...
```

1

3.8 BCPL

In order to test and run our code generation phase, we also have to generate a lexical analyser and parser. For these, we use two systems which also generate BCPL procedures. For the former, we use LEXGEN [Suf78a], and for the latter LL1 [Suf78b]. This syntactic phase builds up an internal representation of the source programs in the form of a tree. From this automatic generation, and with the help of a text editor FORM [Suf77], we provide an interface to the code generation phase which defines the names of each tree node. With this automatically generated interface, we associate a 'tag' or 'type' to every [s] of a command of the form case [s]:C, and a 'selector' for every sub-expression in C of the same command.

Syntactic Alternative	I Tag	Selectors		
NUC Y UNIT		pl	p2	p3
Dummy	TDummy	1		
If e Then c ₁ Else c ₂	N3ConditionalCom	le	с,	C.
c ₁ ;c ₂ 1 2	N2Sequence	IC,	c	2
While e Do c,	N2While	le	c,2	
c ₁ Repeatwhile e	N2RepeatWhile	IC,	e	
i‡=e	N2. Assignment	111	e	
True	TTrue	i		
False	TFalse	i i		
If e ₁ Then e ₂ Else e ₃ i	N3ConditionalExp TIdent	le ₁	e ₂	e ₃
1:=e'	N2AssignmentExp	i	e'	

So that:

Every [s] | => | replaced by its appropriate [RA.1] | 'tag' or 'selector'
Every 'curly' valuator v | => | respectively replaced by [RA.2] and every domain d | ______trans.v and D..d

With this, we have completed all transformations. In Snapshot 3.14 we show the final version of the unstructured version with side effects and locations. It can be compiled successfully in BCPL and if provided with a syntax analyser and machine interface, it is a CGP for this example language. The only differences between the final version of the unstructured version, against the structured one, are the primitives procedures. In the former, the transformation process has inserted calls to the primitive procedures trans.load and trans.update. In the structured version, the primitive functions of the original semantic specification Load, Conts and Update have been carried over to the final CGP, transformed to BCPL procedure calls. Both Load and Conts correspond to trans.load since in our 'machine-configuration' loading and looking up memory are equivalent operations. The equivalence between the two versions is then obvious, we have to choose one to show the final version, we select the unstructured version, to avoid having to include in the machine interface those three primitives. All procedures inserted by the transformation process are supplied by our system. but primitive functions of the original semantic specification, corresponding to procedures in the final CGP, have to be supplied, in the machine interface, by the user.

- 64 -

Snapshot 3.14: Flow Diagrams State-Unstructured. BCPL let trans.C(node) be switchon type node into by R1.1, R3.1, RA.1 (3.14.1){ case T..Dummy: {}; endcase by R1.1, R2.8, RA.1 (3.14.2) case N2..Sequence: trans.C(p1^node); trans.C(p2^node); endcase by R1.1, R2.9, R3.2/twice, RA.1/3 times, RA.2/twice (3.14.3) case N3..ConditionalCom: trans.E(pl^node).dest.(first.reg) { let econd.code = forward(D..COD) let fcond.code = forward(D..COD) trans.jump.if.false(first.reg, fcond.code) trans.C(p2^node) trans.jump.to(econd.code) fix.here(fcond.code) trans.C(p3^node) fix.here(econd.code) }; endcase by R1.1, R2.9, R2.11, R3.2/3 times, R3.3, R5.2, R5.4, R6.2 RA.1/4 times, RA.2/5 times (3.14.4)case N2...While: {0 let restart.code = here(D..COD) trans.E(pl^node).dest.(first.reg) { let fcond.code = forward(D..COD) trans.jump.if.false(first.reg, fcond.code) trans.C(p2^{node}) trans.jump.to(restart.code) fix.here(fcond.code) }0; endcase by R1.1, R2.8, R2.9/twice, R2.11, R3.2/3 times, R3.3, R5.2, R5.4, R6.1 R6.2, R6.3, RA.1/3 times, RA.2/4 times (3.14.5)case N2..RepeatWhile: { let restart.code = here(D..COD) trans.C(pl^node) trans.E(p2^node).dest.(first.reg) trans.jump.if.true(first.reg, restart.code) }; endcase by R1.1, R2.8, R2.9/twice, R2.11, R3.2/3 times, R3.5, R5.2, R5.4, R6.1 R6.2, R6.3, RA.1/3 times, RA.2/3 times (3.14.6)case N2..Assignment: trans.E(p2^node).dest.(first.reg); trans.update(p1^node, first.reg) endcase by R1.1, R1.2, R2.2, R2.9, R2.11, R2.12, R3.2/twice, R3.3, R5.2, R5.4 R5.6, RA.1/3 times, RA.2 (3.14.7)

```
Snapshot 3.14 (continued)
let trans.E(node).dest.(reg) be switchon type node into
                                        by R1.1, R3.1, R5.1, RA.1 (3.14.8)
{ case T..True:
    trans.load(D..T, TRUE).dest.(reg); endcase
               by R1.1, R2.2, R2.7, R2.14, R5.3, R5.7, RA.1, RA.2 (3.14.9)
 case T...False:
   trans.load(D..T, FALSE).dest.(reg); endcase
               by R1.1, R2.2, R2.7, R2.14, R5.3, R5.7, RA.1, RA.2 (3.14.10)
 case N3..ConditionalExp:
   trans.E(pl^node).dest.(reg)
   { let econd.code = forward(D..COD)
     let fcond.code = forward(D..COD)
     trans.jump.if.false(reg, fcond.code)
     trans.E(p2^node).dest.(reg)
     trans.jump.to(econd.code)
     fix.here(fcond.code)
     trans.E(p3<sup>node</sup>).dest.(reg)
     fix.here(econd.code)
   }; endcase
   by R1.1, R2.9, R2.11, R3.2/3 times, R3.3, R5.3/twice, R5.4, R6.2
   RA.1/4 times, RA.2/5 times
                                                               (3.14.11)
 case T.. Ident:
   trans.load(D..Ide, node).dest.(reg); endcase
        by R1.1, R2.2, R2.7, R2.13, R2.14, R5.3, RA.1/twice, RA.2 (3.14.12)
 case N2..AssignmentExp:
   trans.E(p2^node).dest.(reg)
   trans.load(domain.of(reg), reg).dest.(reg)
   trans.update(pl^node, reg); endcase
   by R1.1, R1.2, R2.2, R2.9, R2.11, R2.12, R2.15, R3.2/twice, R3.3, R5.3
                                                 (3.14.13)
   R5.4, R5.6, R5.7, RA.1/3 times, RA.2
```

CHAPTER 4

Environment

In this chapter we study the impact on the transformation process that results from incorporating an environment. We consider a flow diagram language with environments based on Table 10.1 of [Sto77]. We also extend that table with functions and procedures; both with one call-by-value parameter.

Snapshot 4.1: Flow Diagrams with Environments. Original Specification Syntax i:Ide. identifiers c:Com. commands e:Exp. expressions c ::= Dummy | If e Then c₁ Else c₂ | c₁;c₂ | While e Do c₁ | Let i=e In c₁ | Call e(e₁) e ::= i | If e_1 Then e_2 Else e_3 | Let i= e_1 In e_2 | Fn i. e_1 | Fn i. Is c | e1(e) Semantic Domains $T = [{ TRUE } + { FALSE }].$ truth values $F=[E \rightarrow W]$. function values $P=[E \ge C]$. procedures values q:Q. quotations 0 = [T + Q].output values s:S=0*. machine states $c:C=[S \ge S].$ state transformations $e:E=[T + F + P + { ErrorE }].$ expression results $W=[S \rightarrow [E \times S]].$ expression evaluations D=E. denotations $p:U=[Ide \rightarrow D]$. environments Semantic Domains of 'Interest' ENV=U. environments REG=E. registered values STA=S. states QUO=Q. quotations TEM = [F + P]. templates Semantic Primitives Cwrong: $[Q \ge C]$. Cwrong= xq.Strict{xs.s%q}. Ewrong: $[Q \ge W]$. Ewrong= kq.Strict(ks.<ErrorE,s%q>).

Snapshot 4.1 (continued)	a the second second
$\frac{\text{Semantic Equations}}{\text{C:}[\text{Com} \neq \text{U} \neq \text{C}]}.$	(4.1.1)
C[Dummy]p= Is.	(4.1.2)
$C[c_1;c_2]p= \\ C[c_1]p o C[c_2]p.$	(4.1.3)
$C[Let i=e In c_1]p= \\ E[e]p * \lambda e \cdot C[c_1](p[e/[i]]).$	(4.1.4)
C[If e Then c ₁ Else c ₂]p= E[e]p * Xe.e?T>e T>C[c ₁]p,C[c ₂]p,Cwrong "condition in <if> not <be< td=""><td>oolean>" (4.1.5)</td></be<></if>	oolean>" (4.1.5)
C[While e Do c ₁]p= Fix {xc.{E[e]p *	(4.1.6)
C[Call e(e ₁)]p= E[e]p * %e.e?P>E[e ₁]p * %e'.Strict{e P}e', Cwrong "expression in <call> not <procedure>".</procedure></call>	(4.1.7)
$E:[Exp \ge U \ge W].$	(4.1.8)
E[i]p= Strict()s. <p[i] e,s="" in="">).</p[i]>	(4.1.9)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(4.1.10)
$E[If e_1 Then e_2 Else e_3]p = E[e_1]p * (TC) (TC) (TC) (TC) (TC) (TC) (TC) (TC)$	
<pre>%e.ē?T>e T>E[e2]p,E[e3]p,Ewrong "condition in <ir> not <boolean>"</boolean></ir></pre>	(4.1.11)
<pre>E[Fn i.e₁]p= Strict(\s.<(\e.E[e₁](p[e/[i]])) In E,s>).</pre>	(4.1.12)
E[Fn i. Is c]p= Strict(\s.<{\e.C[c](p[e/[i]])} In E,s>).	(4.1.13)
<pre>E[e_(e_2)]p= E[e_1]p * Xe • e?F>E[e_2]p * Xe' • Strict(e F)e', Ewrong "expression in <call> not <function>".</function></call></pre>	(4.1.14)

In the specification shown in Snapshot 4.1 the domain of expression results, $E=[T + F + P + \{ \text{ ErrorE } \}]$, consists of the union of the three basic domains of truth values, functions, procedures, and the error element <u>ErrorE</u> (denoted by ?_E in [Sto77]). This is why, unlike Table 10.1 of [Sto77], some equations include a domain check of the form e?D. For a definition of '?' see Appendix C. To check and run the code produced by the generated CGP, we wish to include a pre-declared procedure named [Write]. Once we start predeclaring names, instead of including the constants [True] and [False] among the syntactic category of expressions, as it is done in [Sto77], we can also pre-declare them as identifiers. The difference with [Sto77] is that our example language 'runs' in a pre-declared environment. This can be specified with the aid of a new valuator P, giving the semantic value of a 'program':

Snapshot 4.2: Pre-declarations. Original Specification

Extensions to Snapshot 4.1

Syntax: Predeclared Identifiers True:Ide. False:Ide. Write:Ide.

Semantic Equations $P:[Com \neq C]$.

P[c]=

C[c](Tu[PWRITE/[Write]][TRUE/[True]][FALSE/[False]]).

PWRITE:P.

PWRITE=

ke.e?T>Strict{\s.s%(e|T)}, Cwrong "expression in <Write> not <Boolean>".

The 'top' and 'bottom' element of all single letter domains are predefined identifiers in WFF_s. Their names are made out by appending to the letters 'T' and 'B' (respectively associated with 'top' and 'bottom'), the lower case letter corresponding to the domain in question. In the equation for P above, 'Tu' is the top of 'U'. In the equation for <u>Ewrong</u> in Snapshot 4.1 we used the error element <u>ErrorE</u>. This shows the different possibilities provided in WFF; we could have used 'Te' instead, the top element of 'E'.

- 70 -

We have defined the state as a list of output values. These are either produced by <u>PWRITE</u>, which expects a boolean value as its parameter, or by one of the type checking primitives <u>Cwrong</u> or <u>Ewrong</u>, which expect a quotation. These three primitives append their parameter to the output stream. The symbol '%', used in the equations for <u>PWRITE</u>, <u>Cwrong</u> and <u>Ewrong</u>, denotes the list concatenation operator. It is defined in Appendix C and it has not been included among the WFF_s operators because, in all our examples, '%' is used only in equations for primitive functions, which do not intervene in the process of transformation.

4.1 Syntactic Transformations

Recall that in the previous chapter we argued that a strict function on the state corresponds to a hardware activity, hence we eliminated such a function. Now we are presented with strict abstractions in the semantic equations for both procedure and function call, respectively (4.1.7) and (4.1.14). These strict abstractions ensure call by value, an interesting case to which we devote a whole section. For the moment let us assume that we always use call by value. This means that we temporarily define a rule to eliminate the occurrence of <u>Strict</u>. We will see later in Chapter 6 (when analysing the semantic specification of the Lambda Calculus with both call-by-value and call-by-name) how we can 'discover' the particular form of a call by looking at every possible strict or non-strict function. Hence for the moment we define a simple temporary rule which directly eliminates the function Strict:

when e: TEM

Strict(e) =>

[R3.6]

TEM is a 'Domain of Interest'. Its name derives from the implementation concept of a 'template'; a data structure to implement procedures and functions (see Chapter 7). TEM indicates, in a name independent way, which domains are associated with procedures and functions. In what follows whenever we refer to a template, we mean either a procedure or a function.

4.2 Destination Analysis

4.2.1 Template Declaration

The declaration of a template is specified by the abstractions in (4.1.12) and (4.1.13). Assuming a block structured universe, each template will demand isolation. This means that a new, fresh, data area to keep all values must be defined for every abstraction definition. One of the areas, used to keep temporary values, is the area of destinations. In Chapter 2 we introduced first.reg as either a free constant or a free variable containing a description of a place for run-time temporary values. first.reg then indicates where this area starts. If it is a constant it indicates the first fast register available to contain temporaries, otherwise it is a variable contains a description, probably as a level and offset, of the start of and the corresponding run-time activation record's workspace. Hence, if we wish to isolate the use of destinations within each applied occurrence of a template, then we must ensure that all code, generated within the templates body, makes use of destinations within this new area. The problem is that if the template is declared in a semantic function which produces a value in REG, then R5.1 applies (and R5.2 does not, see section 3.4.1) and all references are made to the parameter reg, which might not be first.reg. Therefore, we must substitute first.reg for reg in the body of the template: e => [first.reg/reg]e when e i and e: TEM [R5.8]

- 71 -

A parameter will also be expected in a particular area, indicated by a free constant or free variable named <u>first.par</u>:

when e:TEM and i:REG e => [first.par/i]e₁ In DOM(e) [R5.9] where $e = \lambda i \cdot e_1$

Note that, like <u>first.reg</u>, the interpretation of <u>first.par</u> is open to various implementation choices. It contains a description of a place for parameters, if it is a free constant it indicates a fast register. Alternatively if it is a free variable it indicates the start of the corresponding activation record's parameter area. Also, note the change of functionality of [first.par/i]e₁; we still need to remember, for later analysis, the original domain.

The declaration of a template also requires a load operation which is performed by the same primitive procedure trans.load:

when e:TEM e => trans.load(DOM(e), e) In REG [R5.10] Again, it is up to this primitive to decide what code is in effect necessary. In (4.3.12) and (4.3.13) it will be necessary to load a closure, a label value which, after the Continuation Analysis, will replace the expressions appearing as the second parameter of those two calls of trans.load. For example, according to the machine interface that we have implemented to test our generated CGP, trans.load(D, label).dest.(reg) with an environment link technique [Bor79], will generate the following DEC-10 instructions:

	interpreting	reg as	
a fast	register (reg=AC)	an inv	ocation record word (reg=#off)
HRR	AC, label	HRR	AC, label
HRL	AC, BAS	HRRM	AC,#off(BAS)
		HRLM	BAS.#off(BAS)

```
Snapshot 4.3: Flow Diagrams with Environments. Destination Analysis
                                                                       A Fragment
let C(node, p) be switchon type node into
                                                        by R1.1, R3.1
                                                                         (4.3.1)
  { case [Call e(e,)]:
      E([e], p).dest.(first.reg)
      first.reg?P>
      E([e<sub>1</sub>], p).dest.(first.reg+1)
      first.reg|P(first.reg+1).dest.(first.reg),
      Cwrong("expression in <Call> not <Procedure>"); endcase
      by R1.1, R2.9/twice, R2.11/twice, R3.2/4 times, R3.3/twice, R3.6, R5.2
     R5.4/twice, R5.11
                                                                          (4.3.7)
 let E(node, p).dest.(reg) be switchon type^node into
                                                  by R1.1, R3.1, R5.1
                                                                         (4.3.8)
 { case [Fn i.e,]:
     trans.load(F, E([e<sub>1</sub>], p([first.par/[i]])).dest.(first.reg)).dest.(reg)
      In E; endcase
     by R1.1, R2.2, R2.7, R2.14, R3.2/twice, R5.3/twice, R5.8, R5.9, R5.10
                                                                        (4.3.12)
   case [Fn i. Is c]:
     trans.load(P, C([c], p([first.par/[i]]))).dest.(reg) In E; endcase
     by R1.1, R2.2, R2.7, R2.14, R3.2/twice, R5.3, R5.8, R5.9, R5.10 (4.3.13)
   case [e_1(e_2)]:
     E([e,], p).dest.(reg)
     reg?F>E([e<sub>2</sub>], p).dest.(reg+1); reg|F(reg+1).dest.(first.reg),
     Ewrong("expression in <Call> not <Function>").dest.(reg); endcase
     by R1.1, R2.9/twice, R2.11/twice, R3.2/4 times, R3.3/twice, R3.6, R5.3
     R5.4/twice, R5.11
                                                                        (4.3.14)
```

4.2.2 Template Invocation

For a function call we must also ensure that the resultant value has an appropriate destination.

when e:TEM e(P) => e(P).dest.(first.reg) [R5.11] Note that, by symmetry, we provide a destination both for procedures and functions, even though for procedures it is not always necessary (it is required for example in NEW of a CLASS in SIMULA67 [Sim68]).

Applying these and all other transformations to bring Snapshot 4.1 to the level of the Destination Analysis results in Snapshot 4.3 where we show only those parts which have been transformed by conversions defined in this chapter.

4.3 Continuation Analysis

We still have not encountered continuations in our example language. Nevertheless, in a similar fashion to the analysis of section 3.4.2, we have to look at those parts where jumps, to and from different parts of the code, need to be produced. The areas to analyse are the specifications of abstraction and application. In these areas the code to be planted obviously has to be related and linked.

4.3.1 Template Declaration

The code associated with the declaration of a template (4.3.12) and (4.3.13), relates to the crucial code fragment, usually referred to as the areas of entry to and exit from a procedure or function. The request for such code can be expressed as:

The parameter <u>node</u> to <u>trans.entry</u> and <u>trans.exit</u> is a reference to the parse-tree node under scrutiny. It is supplied to help the machine interface. For example, it might be used to trace procedure or function entry and exit, with reference to the source statement; or to establish a link between entry and exit for purely code generation purposes; or to set the type of a parameter on entry. In some cases, we might need to refer to the code planted on exit (for example if the language includes a resultis), so we rewrite the rule above as:

when e_1 :TEM $e(P_0, e_1, P_1)A = e_1$ $e(P_0, e_1, P_1)A = e_1$ $e(P_0, e_1, P_1)A = e_1$

But because code is planted in a sequential manner, it will be necessary, at the moment of abstraction, to plant appropriate instructions to skip at declaration time over the abstraction body. So we redefine this rule once more:

when
$$e_1$$
:TEM $e(P_0, e_1, P_1)A$ $| = > | e_1 \\ | trans.exit(exit.code, node) \\ | trans.exi$

To avoid clashes of names, here and in all similar cases, declared variables, like any <u>xxxx.code</u> above will, if required, have a digit appended to its name. Also when the domain associated with one of these variables (the parameter to <u>forward</u>) is not COD, then the postfix <u>code</u> of any <u>xxxx.code</u> is replaced by <u>domD</u>, where D is the associated domain. This is done only as an aid to the eye, the lexical structure of WFF_t names convey no semantic value.

In the example language of this section, there are no recursive templates.

However, in J. Stoy's final example language (Appendix D) there are both recursive functions (D.1.34) and procedures (D.1.35). The characteristic of such semantic specification is the presence of the minimal fix point finder <u>Fix</u> in an expression of the form $Fix(\lambda i.e)$. The instance of i:COD resulted (see R6.3 in section 3.4.2) in the association of the variable 'i' with the first instruction of 'e'. Now we are presented with the case of i:TEM, According to R6.4, the first instruction of a template is indicated by the variable <u>ntry.code</u>, so we simply require:

when i:TEM $Fix(\lambda i.e) \Rightarrow [ntry.code/i]e$ [R6.5] The effect is that while planting code for 'e', if there is a reference to 'i', there will be a reference to the entry code. This is precisely the required effect for a recursive structure. Note that the variable <u>ntry.code</u> is in effect inherited from the transformation of 'e', and follows the same naming conventions mentioned above. The result of applying this rule can be found in (D.2.34) and (D.2.35).

4.3.2 Template Invocation

At the moment of invocation of a template (4.3.7) and (4.3.14), everything seems to be ready. The abstractions values are kept respectively in <u>first.reg</u> and <u>reg</u>, the arguments in <u>first.reg+1</u> and <u>reg+1</u> and the destination for the results is in both cases <u>first.reg</u>. There is only need to plant code to call the procedure or function:

when e:TEM e(P)A => trans.call(e, P)A [R6.6]

The actual code planted for call, entry and exit, is not fixed. This depends on the definition of trans.call, trans.entry and trans.exit. One can choose any of the well known machine or language dependent techniques to achieve

the desired effect. In the machine interface used to try our generated CGP, we use an environment link technique [Bor79], the DEC-10 code for entry, exit and call is shown below:

	garbage	collected frames	stack	discipline
code	for entry			
	NTRY	0,#size	MOVEM	LNK, O(TOP)
	MOVEM	LNK, O(TOP)	MOVEM	BAS, 1(TOP)
	MOVEM	BAS, 1(TOP)	MOVE	BAS.TOP
	MOVEM	ENV, 2(TOP)	ADDI	TOP,#size
	MOVE	BAS, TOP		
code	for exit:			
	MOVE	LNK, BAS	MOVE	TOP, BAS
	MOVE	BAS,1(LNK)	MOVE	BAS, 1(TOP)
	JRST	0,@0(lNK)	JRST	0,@0(TOP)
code	for call:			

AC, template MOVE HLRZ ENV, AC JSP LNK, O(AC)

The difference between the left hand side 'garbage collected frames' and the right hand side 'stack discipline' is that in the former, space for invocation frames is obtained through the pseudo-op NTRY, which returns in TOP a pointer to a new frame #size words long (this area must be garbage collected). In the latter, #size words are obtained from the stack, and are released on exit. The example language of this chapter accepts functions and procedures both as parameters and as function results, hence we must use the former in this language.

4.3.3 Type Checking

The process of type checking can be regarded as a [TRE > TRE] transformation which is applied prior to the process of code generation. The corresponding parts of a semantic specification would be abstracted at the level of a 'static' semantics (in the sense of [ADA80]). This phase is of no interest

to us, our primary objective is the analysis of code generation. However, type-checking can be regarded as a parallel phase to code generation, either because there is run-time type checking or because the language under scrutiny embeds in its 'dynamic' semantics (also in the sense of [ADA80]) some sort of 'domain-check', which might call for either a compile or runtime type check. In all previous examples, this matter has been avoided by considering a very simple domain of expression results E=T. But in the domain of expression results is current example, the This is why, each equation requiring one $E=[T + F + P + \{ ErrorE \}].$ particular value in E, has to check, using the WFF operator '?', if the given value is in the expected summand. From a code generation standpoint, this domain check is associated with a type-checking process. To decide whether this type-checking should be done at compile or at run-time, we simple look for 'registered' values associated with the check. Assuming a domain check is used only in the boolean part of a conditional, we define firstly:

The primitive procedure <u>trans.skip.if.in</u> will have to plant appropriate instructions to 'run-time' type check the domain associated with a destination. For example, using two words, one for a value and another for a type; the generated CGP will generate in turn:

```
code for i?d -> cl, c2:
```

F: E:

DMOVE	AC2,i	:	as	a	result	of	R6.7
SKIPE	AC3,d	,		-	recure	or	R0•7
JRST cl	0,F	;	R6 .	.2			
JRST c2	0,E						

The transformation rule above, is triggered by a condition on REG. This suggests its counterpart, the compile-time type checking rule:

when not i:REG i?d => check.if.in(i, d)

<u>check.if.in</u> does not plant any code, it compile-time checks the description of a value (i) with respect to a type (d). This method works well provided all expressions involving a compile time check are not in REG. To see why this is not enough consider the example language of this chapter. This language clearly requires run time type checking, because:

- There are no explicit types provided by the syntax
- Expressions can result in booleans, functions or procedures.
- These values can be passed as parameters or returned as the value of functions.
- The double arm conditional expression does not guarantee 'balancing' in the sense of ALGOL68 [Wij75].

But suppose that we impose certain syntactic restrictions, which guarantee that run-time type checking is not necessary. Suppose we restrict the use of the conditional and the kind of values passed to and from functions. These restrictions, whatever their nature, do not necessarily require a different semantic specification, but our transformational system will still generate a CGP with run-time type checking. The problem is that the two rules above are triggered by registered values in REG, which are independent of any syntactic restriction. To overcome this problem, we introduce an implementation issue at the level of a semantic specification. When we require a compile-time type check we shall use the static domain check '??', instead of the dynamic '?'. This is a similar operator which can be trapped during the transformation process to impose our requirement. We rewrite the rule above as:

 $e \Rightarrow$ check.if.in(i, d) [R6.8] when (e = i?d and not i:REG) or e = i??d

This mechanism of type checking, both at compile and at run-time, requires destinations to be carriers of type information. This is why, the primitive <u>trans.load</u> takes a domain name as one of its parameters. It is up to the definition of <u>trans.load</u> to either associate a type to its destination descriptor, for compile time type checking, or to plant appropriate instructions to load, at run time, a type to be associated with a fast register or activation record location.

Cond and Scond: In some examples of [Sto77], the conditional is avoided by explicit use of the function <u>Cond</u>. This is a generic function, and it is a predefined WFF_s identifier. Its counterpart <u>Scond</u> (Static Cond) indicates compile-time type checking.

Cond <e₁,< th=""><th>$e_2 > e_0$</th><th>:=</th><th>$[[A \times A] \Rightarrow B \Rightarrow A] = {0}^{2}T \Rightarrow (e T \ge e_{1}, e_{2}), \text{ Wrong}$</th><th>[D8]</th></e₁,<>	$e_2 > e_0$:=	$[[A \times A] \Rightarrow B \Rightarrow A] = {0}^{2}T \Rightarrow (e T \ge e_{1}, e_{2}), \text{ Wrong}$	[D8]
Scond <e1,< td=""><td>Scond e₂>e₀</td><td>: =</td><td>$[[A \times A] \Rightarrow B \Rightarrow A] e_0??T \Rightarrow (e T \Rightarrow e_1, e_2), Wrong$</td><td>[D9]</td></e1,<>	Scond e ₂ >e ₀	: =	$[[A \times A] \Rightarrow B \Rightarrow A] e_0??T \Rightarrow (e T \Rightarrow e_1, e_2), Wrong$	[D9]

These definitions lead naturally to the following Normalisation rules:

In Snapshot 4.4 we show the result of the Continuation Analysis. Again, to

Snapshot 4.4: Flow Diagrams with Environments. Continuation Analysis A Fragment let C(node, p) be switchon type node into no change { case [Call e(e1)]: E([e], p).dest.(first.reg) { let econd.code = forward(COD) let fcond.code = forward(COD) trans.skip.if.in(first.reg, P) trans.jump.to(fcond.code) E([e₁], p).dest.(first.reg+1) trans.call(first.reg|P, first.reg+1).dest.(first.reg) trans.jump.to(econd.code) fix.here(fcond.code) Cwrong("expression in <Call> not <Procedure>") fix.here(econd.code) }; endcase by R6.2, R6.6, R6.7 (4.4.7)let E(node, p).dest.(reg) be switchon type^node into no change { case [Fn i.e,]: { let ntry.domF = forward(F) let exit.code = forward(COD) let skip.code = forward(COD) trans.jump.to(skip.code) trans.entry(ntry.domF, node) E([e₁], p([first.par/[i]])).dest.(first.reg) trans.exit(exit.code, node) fix.here(skip.code) trans.load(F, ntry.domF).dest.(reg) }; endcase by R6.4 (4.4.12) case [Fn i. Is c]: { let ntry.domP = forward(P) let exit.code = forward(COD) let skip.code = forward(COD) trans.jump.to(skip.code) trans.entry(ntry.domP, node) C([c], p([first.par/[i]])) trans.exit(exit.code, node) fix.here(skip.code) trans.load(P, ntry.domP).dest.(reg) }; endcase by R6.4 (4.4.13) case [e1(e2)]: E([e,], p).dest.(reg) { **let** econd.code = forward(COD) let fcond.code = forward(COD) trans.skip.if.in(reg, F) trans.jump.to(fcond.code) E([e₂], p).dest.(reg+1) trans.call(reg|F, reg+1).dest.(first.reg) trans.jump.to(econd.code) fix.here(fcond.code) Ewrong("expression in <Call> not <Function>").dest.(reg) fix.here(econd.code) }; endcase by R6.2, R6.6, R6.7 (4.4.14)

- 81 -

avoid clustering, only those parts affected by the transformations of this section are shown. Moreover, the conditional command and the while loop, have been removed, because the effect of R6.7 is similar to the one shown in (4.4.7) and (4.4.14).

4.4 Environment Analysis

We wish to maintain one single compile (or run) time symbol structure, global for any procedure requiring access to it. This assumes a block structured use of the environment. As with any data structure, we need to insert, delete and find elements (descriptors). In the current example, the environment is passed around and it gets updated in both types of definitions by denotation (4.1.4) and (4.1.10). Both updates occur within the context of recursive procedures. To maintain such a symbol structure global to a set of mutually recursive procedures - we have to insert and delete locally to every recursive activation. The CGP will have to remember - within each recursive activation - which objects are declared, so that before exiting that particular activation, the same objects can be undeclared in turn. The transformations that follow will eliminate all environments from parameter lists, and will 'sandwich' declarations with the corresponding reset action.

$$e_{0}(P_{0}, i([e_{1}/e_{2}]), P_{1})A | => | e_{0}(P_{0}, P_{1})A | => | e_{0}(P_{0}, P_{1})A | undeclare(x)$$
when i:ENV

This has the desired effect, but we wish to be more general. In a different language we might have more than one declaration, and the undeclaring activity might be too expensive. We therefore, rewrite the rule above, adding also a similar one for a let declaration:

The variable <u>this.env</u> is a reference to the current environment (a symbol structure plus a stack, an A-List or whatever implementation choice has been made). The assignment to <u>old.env</u> remembers, locally to each recursive activation, the state of the current environment. <u>declare</u> updates it and <u>reset</u> puts it back to the original state. The first parameter to <u>declare</u>, like the one supplied to <u>trans.load</u>, is given for type checking purposes. <u>declare</u> might or might not produce code. In particular, if the declared object is not known at compile time, (because, say, it is a destination in REG, which will be associated with a particular value at run-time) then <u>declare</u> will have to associate a temporary location with the declared name. In our machine interface, the following equivalence holds:

declare(
$$P_0$$
, reg, P_1) $| = |$ { LET I = new.loc()
 $| = |$ trans.update(I, reg)
 $| = |$ declare(P_0 , I, P_1)

We are not including this equivalence as rule of our transformational system. It is a procedural action within the machine interface. Transformations like this, could be added at every level, but such transformations are in effect macro expansions and we do not pursue further in this direction.

R7.1, R7.2 and R7.3 fulfil two requirements, i.e: insertion and deletion. To search for an element in the global symbol structure we need: when i:ENV i(P)A => look.up(P)A [R7.4] We are in effect presented here with a choice of 'styles' of target CGP. Suppose we extend R5.3 and R5.7, both defined in section 3.4.1, with a further condition acting on the domain of interest ENV, as follows:

e(P) => e(P).dest.(reg) In COD when e(P):REG and not (e=i and i:ENV)

 $\begin{cases} C_0; e; C_1 \\ or \\ or \\ e_0 \\ e; e_2 \\ e_0 \\ e_1, e_1 \\ e_1 \\$

Under the transformations dictated by the these two rules, the procedural text corresponding to an identifier within an expression would be: trans.load(domain.of(look.up([i])), look.up([i])).dest.(reg)

This corresponds to a view which associates, to the process of looking up a value, the activity which involves only a read of a symbol table description. We have experimented with this version. It was attractive because it structured the CGP, splitting a look-up from a load activity. In more complex languages, however, like the one considered in Chapter 6, (the Lambda Calculus with both call-by-value and call-by-name) the structure of <u>look.up</u> requires the following process: looking up a symbol table; loading a value; call of a 'thunk' to find the value associated with a 'name' expression; and jump if necessary to the appropriate continuation. Also, we wish to prepare the shape of our transformational system to handle not only

the 'static binding' mechanism that we practise in the present examples, but also 'dynamic binding'. In this case, all primitive procedures which maintain a symbol structure at 'compile-time', should instead plant appropriate code to do the same, at 'run-time'. In this case we also require <u>look.up</u> to be a separate process. We do not proceed with the proposed extensions to R5.3 and R5.7. The corresponding procedural text under the original definition of these two rules is: look.up([i]).dest.(reg) (4.5.9).

Now that the environment is global to all the CGP's procedures, we can eliminate it from parameter lists:

when i:ENV let
$$v(P_0, i, P_1)A \Rightarrow let v(P_0, P_1)A$$
 [R7.5]

when i:ENV $e(P_0, i, P_1)A \implies e(P_0, P_1)A$ [R7.6]

In Snapshot 4.5 we show the effect of these transformation rules. We display only the cases corresponding to both let declarations and the identifier among expressions. The other cases transformed by the Environment Analysis are similar to those shown.

4.5 Optimising Transformations

4.5.1 Dumping

If we now consider the interpretation of <u>first.reg</u> as a fast register then we cannot leave the occurrence of the expressions <u>first.reg+1</u> and <u>reg+1</u> of Snapshot 4.4 as they stand: On the one hand it is not always true that every intermediate result will occupy one register's word. On the other hand in a recursive procedure (of the CGP), such an expression assumes the existence of an infinite supply of fast registers. What we require is to check whether or not the <u>first.reg+1</u> or <u>reg+1</u> is available. This can be done, if we assume a weighted tree [Bor79]. In this case <u>weight</u> selects the number of registers

Snapshot 4.5: Flow Diagrams with Enviro	nments. Envi:	ronment	: Analy	/sis
			A	Fragment
let C(node) be switchon type node into		by	R7.5	(4.5.1)
{ case [Let i=e In c ₁]:				
<pre>E([e]).dest.(first.reg)</pre>				
{ let old.env = this.env				
<pre>declare(domain.of(first.reg), first.r C([c₁]) </pre>	eg, [i])			
reset(old.env)	b D7 1	D7 0	D7 6	14 5 41
; endcase	by R/.1,	R/.2,	K/•0	(4.3.4)
1				
<pre>let E(node).dest.(reg) be switchon type^nod { case [i]:</pre>	e into	by	R7.5	(4.5.8)
<pre>look.up([i]).dest.(reg) In E; endcase</pre>		by	R7.4	(4.5.9)
case [Let i=e, In e ₂]:				
E([e,]).dest.(reg)				
{ let old.env = this.env				
<pre>declare(domain.of(reg), reg, [i])</pre>				
E([e ₂]).dest.(reg)				
reset(old.env)				
}; endcase	by R7.1,	R7.2,	R7.6	(4.5.10)
1	1			

required by a particular node and <u>max.reg</u> indicates the last available register. The CGP can then check if the request can be granted. If it can, then a new destination is obtained through a call of the function <u>next</u>, so that the appropriate offset can be evaluated. If it can not be granted, then a dump operation takes place. We formalise this by:

when
$$C = \{C_1; C_2; C_3\}$$
 and $C_2 = e(P_0, [s], P_1)A.dest.(R+1) (P contains an [s])$

Note that we are using the special substitution rule { / }, whose definition

is similar to the normal substitution rule [/], except when entering an auxiliary parameter list AUX, where it does not substitute .dest.(P). We have to substitute only non-destination registers, because a destination is an implicit declaration, introduced by rules like R5.4, among others. The trimmed form (to show only the relevant detail) is:

{ let i=e(P); C } => { e(P).dest.(i) ; C }

Also this requires a definition of 'free', which 'feels' destinations as declarations.

<u>trans.dump</u> gets a new temporary destination (a location) and plants appropriate instructions to store the contents of <u>R</u>. The temporary destination needs to remain 'in scope' only while code for [R/R+1]{D/R}C is planted. This is why the dump activity is surrounded by the 'brackets': let old.env = this.env; C; reset(old.env)

4.5.2 Multiple Declarations

More than one declaration, in the same equation, results in multiple declarations which can easily be optimised as follows:

<pre>{ let old.env = this.env C { let old.env = this.env C c reset(old.env) } reset(old.env) }</pre>		<pre>{ let old.env = this.env C1 C2 reset(old.env) }</pre>	[R9.2]
--	--	--	--------

4.5.3 Loading

It is possible for the generation process to request loads from a register into itself. This can be easily trapped, but we have to be cautious: A load operation also assigns a type to a register for compile or run-time type checking purposes. Hence, we can eliminate the load operation but not the type definition, except when there is no type alteration.

trans.load(E, I).dest.(I) $| \Rightarrow |$ make.type(I, E) [R9.3] when E \pm domain.of(I) | | | trans.load(E, I).dest.(I) $| \Rightarrow |$ {} [R9.4] when E \equiv domain.of(I) | | |

<u>domain.of</u> was defined in section 3.4.1, as part of the definition of <u>DOM</u>. <u>make.type</u> is a primitive operation that associates a type to a destination.

We also take the oportunity to eliminate possible expensive duplicate subexpressions produced by the introduction of <u>domain.of</u>. This will happen in general in the parameter list of trans.load or declare.

 $E_0(\text{domain.of}(E), E, P)A \mid \Rightarrow \mid E_0(\text{domain.of}(xx), xx)A \quad [R9.5]$ when $E \neq I \quad | \quad | \quad where xx = E$

Note that the where statement defining xx is BCPL syntax. Is is not included as a WFF_t expression since it is trivially equivalent to a BCPL let.

4.6 BCPL

When a conditional does not denote a run time activity and appears in a block, we have to transform it into one of the different types of BCPL conditional commands, depending on the form of each branch:

```
Snapshot 4.6: Compile-Time Type Checking. BCPL
case N3..ConditionalCom:
        trans.E(pl^node).dest.(first.reg)
        test check.if.in(first.reg, D..T)
        then { let econd.code = forward(D..COD)
              let fcond.code = forward(D..COD)
              trans.jump.if.false(first.reg, fcond.code)
               trans.C(p2^node)
              trans.jump.to(econd.code)
              fix.here(fcond.code)
              trans.C(p3^node)
              fix.here(econd.code)
            }
           Cwrong("condition in <If> not <Boolean>"); endcase
       or
       by R1.1, R2.9, R2.11, R3.2/4 times, R3.3, R5.2, R5.4, R6.2, R6.8
       R7.6/3 times, RA.1/4 times, RA.2/6 times, RA.3
                                                                        (4.6.5)
```

$$\begin{cases} C_0 \\ e_0 \\ C_1 \\ c_$$

Among other applications, these rules are applied in a compile-time type checking process. Suppose that the syntactic restrictions refered to in section 4.3.3 apply to our current example language. The equation for a conditional will be rewritten exactly as in (4.1.5) except for the static check '??' instead of the dynamic '?'. The resultant procedural case (4.6.5) shown in Snapshot 4.6 should be compared with the corresponding (4.7.5) in Snapshot 4.7.

We have completed all conversions required for the transformation processes of this chapter. In Snapshot 4.7, we display the final version in BCPL; this time we include all syntactic categories. The example language, used at this point, is now powerful enough to allow us to show the kind of code that we are able to generate. The reader must be aware, that the topic of this thesis, merges both the theoretical issues of a semantic universe, with implementation issues of code generation techniques. It is therefore imperative to show, at certain point, the sort of code that we can produce.

Consider the following input program:

```
Let f=Fn i.

Fn j.i

In Let g=f(True)

In Let x=g(False)

In Call Write(x)
```

This trivial program involves the high level concept of a function returning a function and it serves to emphasise the mechanism and treatment of the environment presented in this chapter. The above program, compiled with the CGP shown in Snapshot 4.7 produced the following DEC-10 code:

by RL, ASTR. SLAPP, MARK , CLA Rd

code	for: Let	f=Fn etc		
code	for: Fn i	. etc		
	JRST	0.L5	; trans.jump(L5, TRUI	E)
L6:	NTRY	0,0	; trans.entry(L6, Fn	i. etc)
	MOVEM	LNK, O(TOP)		
	MOVEM	BAS,1(TOP)		
	MOVEM	ENV,2(TOP)		
	MOVE	BAS, TOP		
	DMOVEM	AC4, 3(BAS)	; declare({}, AC4, i))
code	for: Fn j	.i in the second		hand - of action of
9595	JRST	0.L7	; trans.jump(L7, TRU)	E)
1.8:	NTRY	0.0	; trans.entry(L8, Fn	j.i)
401	MOVEM	LNK, O(TOP)		
	MOVEM	BAS, 1(TOP)		
	MOVEM	ENV,2(TOP)		
	MOVE	BAS, TOP		
	DMOVEM	AC4, 3(BAS)	; declare({}, AC4, j)
code	for: i	ng 13 has sul 5		
	HRR	ENV,2(BAS)		
	DMOVE	AC2,3(ENV)	; trans.load({}, [L1	,#003]).dest.(AC2)
	MOVE	LNK, BAS	; trans.exit(forward	, Fn j.i)
	MOVE	BAS,1(LNK)		ile obnismi se meži
	JRST	0,@0(LNK)	; 5 to entry	
L7:	HRRI	AC2,L8		
	HRL	AC2, BAS	; trans.load(F, L8).	dest.(AC2)
	MOVEI	AC3,F	; make.type(AC2, F)	5/12 03 = 10 37
	MOVE	LNK, BAS	; trans.exit(forward	, Fn i. etc)
	MOVE	BAS,1(LNK)		
	IRST	0.@0(LNK)	; 8 to entry	

L5: HRRI AC2,L6 HRL AC2, BAS ; trans.load(F, L6).dest.(AC2) MOVEI AC3,F ; make.type(AC2, F) DMOVEM AC2, 10+Base ; declare(F, AC2, f) code for: Let g=f(True) etc code for: f(True) code for: f DMOVE AC2,10+Base ; trans.load(F, [L0,#010]).dest.(AC2) CAIE AC3,F ; trans.skip.if.in(AC2, F) JRST 0,L9 ; trans.jump(L9, TRUE) code for: True DMOVE AC4,4+Base ; trans.load(T, [L0,#004]).dest.(AC4) HLRZ ENV, AC2 JSP LNK, O(AC2) ; trans.call(AC2, AC4) JRST 0,L10 ; trans.jump(L10, TRUE) L9: SETO AC2,0 ; ErrorE (null value) SETO AC3,0 ; ErrorE (null type) 0,[ASCIZ/*C*L?Ewrong expression in <Call> not <Function>/] OUs L10: DMOVEM AC2, 12+Base ; declare(F, AC2, g) code for: Let x=g(False) etc code for: g(False) code for: g DMOVE AC2,12+Base ; trans.load(F, [L0,#012]).dest.(AC2) CAIE AC3.F ; trans.skip.if.in(AC2, F) JRST 0,L11 ; trans.jump(L11, TRUE) code for: False DMOVE AC4,6+Base ; trans.load(T, [L0,#006]).dest.(AC4) HLRZ ENV, AC2 JSP LNK, O(AC2); trans.call(AC2, AC4) JRST 0,L12 ; trans.jump(L12, TRUE) L11: SETO AC2,0 ; ErrorE (null value) SETO AC3,0 ; ErrorE (null type) 0,[ASCIZ/*C*L?Ewrong expression in <Call> not <Function>/] OUs L12: DMOVEM AC2, 14+Base ; declare(F, AC2, x) code for: Call Write(x) code for: Write DMOVE AC2, O+Base ; trans.load(P, [L0,#000]).dest.(AC2) AC3, P CAIE ; trans.skip.if.in(AC2, P) JRST 0,L13 ; trans.jump(L13, TRUE) code for: x DMOVE AC4,14+Base ; trans.load(F, [L0,#014]).dest.(AC4) HLRZ ENV, AC2 JSP LNK, O(AC2) ; trans.call(AC2, AC4) JRST 0,L14 ; trans.jump(L14, TRUE) 0,[ASCIZ/*C*L?Cwrong expression in <Call> not <Procedure>/] L13: OUs

Snapshot 4./: Flow Diagrams with	th Environments. BCPL
let trans.C(node) be switchon type node int	
Dia d	7 KI.I, KJ.I, K/.J, KA.I (4./.I,
{ case TDummy:	1 51 1 50 0 54 1 (6 7 3)
{}; endcase	by R1.1, R2.8, RA.1 (4.7.2)
case N2Sequence:	Second with they - Wey and
trans.C(pl^node); trans.C(p2^node); end	dcase
by R1.1, R2.9, R3.2/twice, R7.6/twice,	RA.1/3 times, RA.2/twice (4.7.3)
case N3DefinitionByDenotationCom:	na dine . E. A. di Vicità
<pre>trans.E(p2^node).dest.(first.reg) { let old.env = this.env</pre>	and a set
declare(domain.of(first.reg), first.	reg, pl^node)
trans.C(p3^node)	
reset(old.env)	and the second second
}: endcase	a de constante en la mais
by R1.1, R2.9, R2.11, R3.2/3 times, R3.	.3, R5.2, R5.4, R7.1, R7.2, R7.6
RA.1/4 times, RA.2/twice	(4.7.4)
case N3ConditionalCom:	
<pre>trans.E(pl^node).dest.(first.reg)</pre>	
{ let econd.code = forward(DCOD)	
<pre>let fcond.code = forward(DCOD)</pre>	
<pre>trans.skip.if.in(first.reg, DT)</pre>	code the cutae
<pre>trans.jump.to(fcond.code)</pre>	
{ let econd.code = forward(DCOD)	
<pre>let fcond.code = forward(DCOD)</pre>	
trans.jump.if.false(first.reg, fcom	nd.code)
trans.C(p2 ^{node})	
<pre>trans.jump.to(econd.code)</pre>	
fix.here(fcond.code)	
trans.C(p3^node)	LIZ: CONVENT ALL FORMAL
fix.here(econd.code)	
}	conder for a Written
trans.jump.to(econd.code)	
fix.here(fcond.code)	
Cwrong("condition in <if> not <booles< td=""><td>an>")</td></booles<></if>	an>")
fix.here(econd.code)	
}; endcase	
by R1.1, R2.9, R2.11, R3.2/4 times, R3	.3, R5.2, R5.4, R6.2/twice, R6.7
R7.6/3 times, RA.1/4 times, RA.2/8 time	es (4.7.5)

```
Snapshot 4.7 (continued)
   case N2..While:
     {0 let restart.code = here(D..COD)
        trans.E(pl^node).dest.(first.reg)
         { let econd.code = forward(D..COD)
          let fcond.code = forward(D..COD)
          trans.skip.if.in(first.reg, D..T)
          trans.jump.to(fcond.code)
           { let fcond.code = forward(D..COD)
            trans.jump.if.false(first.reg, fcond.code)
            trans.C(p2^node)
            trans.jump.to(restart.code)
            fix.here(fcond.code)
          trans.jump.to(econd.code)
          fix.here(fcond.code)
          Cwrong("condition in <While> not <Boolean>")
          fix.here(econd.code)
     }0; endcase
     by R1.1, R2.8, R2.9/twice, R2.11, R3.2/4 times, R3.3, R5.2, R5.4, R6.1
     R6.2/twice, R6.3, R6.7, R7.6/twice, RA.1/3 times, RA.2/7 times
                                                                       (4.7.6)
   case N2..Call:
     trans.E(pl^node).dest.(first.reg)
     { let econd.code = forward(D..COD)
       let fcond.code = forward(D..COD)
       trans.skip.if.in(first.reg, D..P)
       trans.jump.to(fcond.code)
       test weight p2 node=max.reg
       then { let old.env = this.env
              let dmp.loc = trans.dump(first.reg)
              trans.E(p2^node).dest.(first.reg)
             trans.call(dmp.loc, first.reg).dest.(first.reg)
             reset(old.env)
        or
            { let nxt = next(first.reg)
             trans.E(p2^node).dest.(nxt)
             trans.call(first.reg, nxt).dest.(first.reg)
           }
      trans.jump.to(econd.code)
      fix.here(fcond.code)
      Cwrong("expression in <Call> not <Procedure>")
      fix.here(econd.code)
    }; endcase
    by R1.1, R2.9/twice, R2.11/twice, R3.2/4 times, R3.3/twice, R3.6, R5.2
    R5.4/twice, R5.11, R6.2, R6.6, R6.7, R7.6/twice, R9.1, RA.1/5 times
    RA.2/6 times
                                                                      (4.7.7)
}
let trans.E(node).dest.(reg) be switchon type^node into
                                   by R1.1, R3.1, R5.1, R7.5, RA.1
                                                                      (4.7.8)
{ case T..Ident:
   look.up(node).dest.(reg); endcase
         by R1.1, R2.2, R2.7, R2.14, R3.2, R5.3, R7.4, RA.1/twice
                                                                      (4.7.9)
```

```
Snapshot 4.7 (continued)
case N3..DefinitionByDenotationExp:
  trans.E(p2^node).dest.(reg)
  { let old.env = this.env
    declare(domain.of(reg), reg, pl^node)
    trans.E(p3^node).dest.(reg)
    reset(old.env)
  }; endcase
  by R1.1, R2.9, R2.11, R3.2/3 times, R3.3, R5.3, R5.4, R7.1, R7.2, R7.6
  RA.1/4 times, RA.2/twice
                                                               (4.7.10)
case N3..ConditionalExp:
  trans.E(p1^node).dest.(reg)
  { let econd.code = forward(D..COD)
    let fcond.code = forward(D..COD)
   trans.skip.if.in(reg, D..T)
   trans.jump.to(fcond.code)
    { let econd.code = forward(D..COD)
     let fcond.code = forward(D..COD)
     trans.jump.if.false(reg, fcond.code)
     trans.E(p2^node).dest.(reg)
     trans.jump.to(econd.code)
     fix.here(fcond.code)
     trans.E(p3^node).dest.(reg)
     fix.here(econd.code)
   trans.jump.to(econd.code)
   fix.here(fcond.code)
   Ewrong("condition in <If> not <Boolean>").dest.(reg)
   fix.here(econd.code)
  }; endcase
  by R1.1, R2.9, R2.11, R3.2/4 times, R3.3, R5.3/3 times, R5.4
 R6.2/twice, R6.7, R7.6/3 times, RA.1/4 times, RA.2/8 times
                                                               (4.7.11)
case N2.. Abstraction:
  { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code)
   trans.entry(ntry.domF, node)
   { let old.env = this.env
     declare(domain.of(first.par), first.par, pl^node)
     trans.E(p2^node).dest.(first.reg)
reset(old.env)
     reset(old.env)
   }
   trans.exit(exit.code, node)
   fix.here(skip.code)
   trans.load(D..F, ntry.domF).dest.(reg)
  }; endcase
  by R1.1, R2.2, R2.7, R2.14, R3.2/twice, R5.3/twice, R5.8, R5.9, R5.10
  R6.4, R7.1, R7.2, RA.1/3 times, RA.2/5 times
                                                               (4.7.12)
```
```
Snapshot 4.7 (continued)
        case N2..Routine:
          { let ntry.domP = forward(D..P)
            let exit.code = forward(D..COD)
            let skip.code = forward(D..COD)
          trans.jump.to(skip.code)
           trans.entry(ntry.domP, node)
     { let old.env = this.env
           declare(domain.of(first.par), first.par, pl^node)
     trans.C(p2<sup>node</sup>)
        reset(old.env)
and the real proof of
           trans.exit(exit.code, node)
fix.here(skip.code)
          trans.load(D..P, ntry.domP).dest.(reg)
  }; endcase
       by R1.1, R2.2, R2.7, R2.14, R3.2/twice, R5.3, R5.8, R5.9, R5.10, R6.4
         R7.1, R7.2, RA.1/3 times, RA.2/5 times
                                                                     (4.7.13)
       case N2.. Application:
         trans.E(pl^node).dest.(reg)
         { let econd.code = forward(D..COD)
           let fcond.code = forward(D..COD)
  trans.skip.if.in(reg, D..F)
           trans.jump.to(fcond.code)
    test weight^p2^node=max.reg
           then { let old.env = this.env
 let dmp.loc = trans.dump(reg)
      trans.E(p2^node).dest.(reg)
trans.call(dmp.loc, reg).dest.(first.reg)
                 reset(old.env)
to ano cinda, cel marta
       or { let nxt = next(reg)
                 trans.E(p2^node).dest.(nxt)
              trans.call(reg, nxt).dest.(first.reg)
              }
          trans.jump.to(econd.code)
     fix.here(fcond.code)
        Ewrong("expression in <Call> not <Function>").dest.(reg)
   fix.here(econd.code)
       }; endcase
       by R1.1, R2.9/twice, R2.11/twice, R3.2/4 times, R3.3/twice, R3.6, R5.3
        R5.4/twice, R5.11, R6.2, R6.6, R6.7, R7.6/twice, R9.1, RA.1/5 times
        RA.2/6 times
                                                                    (4.7.14)
```

CHAPTER 5

Continuations

In this chapter we analyse the correspondence between continuations and code pointers. As an example, we use the Flow Diagrams Language with Jumps based on Table 11.1 of [Sto77]. We will also define all transformation rules required for the final example of [Sto77] and for GEDANKEN [Rey70]. In the following sections any reference to these languages is made with respect to the Original Specification and final CGP in BCPL as shown respectively in Appendices D and E.

Snapshot 5.1 below shows the semantic specification used as an example in this chapter. The semantic equation for blocks is, however, missing. This equation requires special treatment and will be analysed separately later in this chapter. We also remove from Table 11.1 of [Sto77] the two syntactic constructs [True] and [False], assuming a similar strategy to that one of the previous chapter.

The required analysis starts at the level of the Semantic Transformations. We therefore bring the transformation process up to the level of the Syntactic Transformations, as shown in Snapshot 5.2

Snapshot	5.1: Flow	Diagrams	with J	umps.	Original	Specif	ication	<u> </u>
Syntactic Categ i:Ide. c:Com. e:Exp.	ories					ident comma expre	ifiers inds essions	
Syntax c ::= Dummy I Let i=e In e ::= i If e	f e Then c c ₁ Goto Then e ₂ E	1 <mark>Else</mark> c ₂ 1 e 1se e ₃	c _l ;c Let i=e	2 W	hile e Do ^e 2	c ₁		14.15 14.74

and the second

$T = \left[\left\{ TRUE \right\} + \left\{ FALSE \right\} \right]$	and the state of the state of the
s:S.	truth values
A.	machine states
$c:C=[S \rightarrow A]$	answers
e:E=[T + C]	command cont.
d:D=E	expression values
$k \cdot K = [F \ge C]$	denotations
$W \cdot W = [K \ge C]$	expression cont.
$C = [C \ge C]$	expression closur
$p \cdot H = [Ido \ge p]$	command closures
p.o-[ide 9 b].	environments
Semantic Primitive	
Wrong:C.	undefined
Semantic Domains of 'Interest'	
ENV=U.	onvironmente
REG=E.	environments
STA=S.	registered values
ANS=A.	states
(beatly though the	answers
Semantic Equations	
$C:[Com \neq U \Rightarrow G].$	(5.1.)
C[Dummy]pc=	
C.	· · · · ·
	(5.1.2
C[If e Then c. Else c.lpc=	
$E[e]p\{e:Cond < C[c] pc, C[c] pc > e\}$	
	(5.1.3
$C[c_1;c_2]pc=$	
CIC, Tp{C[c,]pc}.	15.1
	(5.1.2
C[While e Do c.]pc=	
Fix{xc'.E[e]p{}e.Cond <c[c]pc'.c="">e}}</c[c>	(5.).5
the several of the several.	(5.1.5
C[Let i=e In c_]pc=	
$E[e]p{xe.C[c_1](p[e In D/[i]])c}.$	(5.1.6
C[Goto e]pc=	
E[e]p{xe.e?C→e C,Wrong}.	(5.1.7
$E:[Exp \ge U \ge W].$	(5.1.0
the second and and the second second	(5.1.8
E[i]pk=	
k{p[i]}.	(5.1.9
If e Then e Flee e lok-	
Ele Inthe Condiction 1 1 The Providence	
Incliption condense 2 Jpk, E[e3] pk>e}.	(5.1.10
let i=e In e lok-	
$E[e] p \{ e, E[e^2] (p[e] Tp p/(d]) \} \}$	
-relibive.prelibite ru n/[r]])k}.	(5.1.11

apshot 5.1 (continued

5.1 Semantic Transformations

5.1.1 Splitting Continuations

Expression Continuations: An expression continuation abstracts the meaning of the rest of the program which is expecting a particular value. As we have seen, values are kept in destinations, either registers or positions in an activation record. From a code generation point of view an expression continuation involves two activities, one to load a value into a destination, the other to continue with the appropriate continuation. It seems natural then, to split every occurrence of such an expression into its two components: a destination and a command continuation. This splitting activity will apply also to environment continuations (without a load), like the one required for GEDANKEN.

Definition: An 'internal' domain of interest KON is required and defined as follows:

for	i=1n				
	let A,	=	any domain		
	let D,	=	any domain		
	let K	=	$[A_{i} \rightarrow COD]$		
	let B	=	$[K_1^{\perp} \neq COD]$		
	B ¹ ₂	=	$[[D_1 \times K_2] \neq CO$	D]	
		=			
	Bn	-	$[[D_1 \times D_2 \times \cdots$	$D_{n-1} \times K_n \rightarrow$	COD]
	KON	=	I_IK ₁	10-11-03	[D10]

 $|_|$ indicates domain union. Every summand K_i of KON is a function $[A_i \ge COD]$ which produces code and appears as the last parameter of a function B_i that also produces code. To be general, we should not restrict this definition to 'the last parameter', but all our examples are written in such a way that an expression continuation is the last function in the sequence of curried applications. So we simplify the definition of rules by imposing a 'style'

Snapshot 5.2: Flow Diagrams with Jumps. Syntactic Transformations let C(node, p, c) be switchon type node into by R1.1, R3.1 (5.2.1){ case [Dummy]: c; endcase by R1.1 (5.2.2)case [If e Then c, Else c₂]: E([e], p, λe.e?T>e>C([c₁], p, c),C([c₂], p, c),Wrong); endcase by R1.1, R1.4, R3.2/3 times (5.2.3)case [c1;c2]: $C([c_1], p, C([c_2], p, c));$ endcase by R1.1, R3.2/twice (5.2.4)**case** [While e Do c₁]: Fix($c' \cdot E([e], p, e \cdot e?T \rightarrow e \rightarrow C([c_1], p, c'), c, Wrong)$; endcase by R1.1, R1.4, R3.2/3 times (5.2.5)case [Let i=e In c,]: E([e], p, he.C([c₁], p([e In D/[i]]), c)); endcase by R1.1, R3.2/3 times (5.2.6)case [Goto e]: E([e], p, he.e?COD>e|COD,Wrong); endcase by R1.1, R3.2 (5.2.7)} let E(node, p, k) be switchon type^node into by R1.1, R3.1 (5.2.8){ case [i]: k(p([i])); endcase by R1.1, R3.2/twice (5.2.9)case [If e1 Then e2 Else e3]: $E([e_1], p, ke.e?T \rightarrow e \rightarrow E([e_2], p, k), E([e_3], p, k), Wrong);$ endcase by R1.1, R1.4, R3.2/3 times (5.2.10) case [Let $i=e_1$ In e_2]: E([e₁], p, \$e.E([é₂], p([e In D/[i]]), k)); endcase by R1.1, R3.2/3 times (5.2.11)

of utilising expression continuations. For example, in Snapshot 5.1 we can see that K_i domains are: K=[E>C], W=[K>C] and G=[C>C] because C=COD after the state analysis. Of these only K appears in any B_i domain, i.e: the domain [Exp>U>W]=[Exp>U>K>C] which, after the Syntactic Transformations, is (the data type): [[Exp x U x K]>COD]. So, in this example, KON=K, the domain of expression continuations. In GEDANKEN, KON=[K + X], because in that language there are both expression and environment continuations. An alternative way of defining KON, instead of internally defining it, is to allow the user to supply the required information. KON would then be defined as a 'domain of interest' in the semantic specification.

To analyse expression continuations in KON we need to consider: applications, abstractions as parameters and variables as parameters:

Applications: We must explicitly divide an applied occurrence of an expression continuation. On the one hand to prepare a value for the destination or environment analysis, and on the other, to prepare a reference for the continuation analysis:

when e_0 :KON $e_0(e_1) \Rightarrow e_1$; e_0 In COD [R4.1] This way of splitting continuations requires an extension to R5.7 which was defined in section 3.4.1. Now, there are many more cases that require a load operation; here is the final version of that rule:

when where

$$\begin{cases} C_0; e; C_1 \\ or \\ or \\ e_0 \\ e e, e_2 \\ or \\ e_0 \\ e_0 \\ e_1, e \\ e_0 \\ e_1, e \\ e_1 \\ e_0 \\ e_1, e \\ e_1 \\$$

((e=i and not i:ENV) or $e=E_0!E_1$ or $e=#e_0$ or e=n or e=q)

Abstractions as parameters: This is the case of a definition of an expression continuation. We associate the bound variable with the destination and the body with a command continuation in the following way: $e_0(P, \lambda i \cdot e_1) = \sum_{i=1}^{n} e_0(P) \cdot \operatorname{cont}_i(e_1) \cdot \operatorname{dest}_i(i) \qquad [R4.2]$ when $(\lambda i \cdot e_1) : \operatorname{KON}_i = \sum_{i=1}^{n} e_0(P) \cdot \operatorname{cont}_i(e_1) \cdot \operatorname{dest}_i(i) \qquad [R4.2]$

```
Snapshot 5.3: Flow Diagrams with Jumps. Splitting Continuations
let C(node, p).cont.(c) be switchon type node into
                                                                      by R4.5
                                                                                  (5.3.1)
 { case [Dummy]:
                                                                                no change
  case [If e Then c<sub>1</sub> Else c<sub>2</sub>]:
E([e], p).cont.(e?T>e>C([c<sub>1</sub>], p).cont.(c),C([c<sub>2</sub>], p).cont.(c),Wrong
      ).dest.(e); endcase
                                                        by R4.2, R4.6/twice
                                                                                  (5.3.3)
   case [c<sub>1</sub>;c<sub>2</sub>]:
     C([c<sub>1</sub>], p).cont.(C([c<sub>2</sub>], p).cont.(c)); endcase by R4.6/twice
                                                                                  (5.3.4)
  case [While e Do c1]:
     Fix(c'.E([e], p).cont.(e?T \rightarrow e \rightarrow C([c_1], p).cont.(c'), c, Wrong).dest.(e))
     endcase
                                                               by R4.2, R4.6 (5.3.5)
  case [Let i=e In c1]:
    E([e], p).cont.(C([c1], p([e In D/[i]])).cont.(c)).dest.(e); endcase
                                                              by R4.2, R4.6
                                                                                (5.3.6)
  case [Goto e]:
    E([e], p).cont.(e?COD>e|COD,Wrong).dest.(e); endcase by R4.2
                                                                                 (5.3.7)
}
let E(node, p).cont.(k).dest.(?) be switchon type^node into
                                                                     by R4.3
                                                                                 (5.3.8)
{ case [i]:
    p([i]); k; endcase
                                                                     by R4.1
                                                                                 (5.3.9)
  case [If e_1 Then e_2 Else e_3]:
    E([e1], p
     ).cont.(e?T>
               e>E([e<sub>2</sub>], p).cont.(k).dest.(?),E([e<sub>2</sub>], p).cont.(k).dest.(?),
              Wrong).dest.(e); endcase
                                                     by R4.2, R4.4/twice (5.3.10)
  case [Let i=e_1 In e_2]:
    E([e<sub>1</sub>], p).cont.(É([e<sub>2</sub>], p([e In D/[i]])).cont.(k).dest.(?)).dest.(e)
    endcåse
                                                              by R4.2, R4.4 (5.3.11)
```

Variables as parameters: When a variable which is an expression continuation is passed as a parameter, we do not have an indication of the destination, so we leave it undefined:

let v(D, i) be C | => | .dest.(? In d) [R4.3]when i:KON=[d>COD] e(P, i) | => | e(P).cont.(i In COD) [R4.4] | | .dest.(? In d)

These two rules must be regarded as temporary transformations. Their immediate resolution is the analysis of destinations, continuations and environments.

Command Continuations: For command continuations, and by symmetry with expression continuations, we define: when i:COD let v(D, i) be C => let v(D).cont.(i) be C [R4.5] when e_1 :COD $e_0(P, e_1) \Rightarrow e_0(P).cont.(e_1)$ [R4.6] Snapshot 5.3 shows the result of splitting expression continuations in this way.

5.1.2 Destination Analysis

The analysis above requires a new set of rules which should be compared with R5.1, R5.3, R5.4 and R5.11 defined in the Destination Analysis of Chapters 3 and 4. These new transformation rules convert .cont.() and .dest.() constructions. The result of their application is shown in Snapshot 5.4. let v(D).cont.(P).dest.(?:d) | let v(D).cont.(P).dest.(reg) be C | => | be C [R5.12] when dCREG [R5.12]

e.cont.(P).dest.(?:d) => e.cont.(P).dest.(reg) [R5.13] when dCREG

 $e.cont.(P).dest.(i) | \Rightarrow | e.cont.(P).dest.(i)$ [R5.14] when i:REG _____ | rename $i=>(i=a_k)>reg+k$, reg

e.cont.(P).dest.(?:d) => e.cont.(P).dest.(first.reg) [R5.15] when e:TEM and dCREG

-

```
Snapshot 5.4: Flow Diagrams with Jumps. Destination Analysis
 let C(node, p).cont.(c) be switchon type node into
                                                                            no change
 { case [Dummy]:
                                                                            no change
   case [If e Then c<sub>1</sub> Else c<sub>2</sub>]:
     E([e], p
      ).cont.(first.reg?T>first.reg>C([c<sub>1</sub>], p).cont.(c),C([c<sub>2</sub>], p).cont.(c),
               Wrong
       ).dest.(first.reg); endcase
                                                           by R5.2, R5.14 (5.4.3)
   case [c<sub>1</sub>;c<sub>2</sub>]:
                                                                            no change
   case [While e Do c1]:
     Fix(xc'.E([e], p
               ).cont.(first.reg?T>first.reg>C([c1], p).cont.(c'),c,Wrong
                ).dest.(first.reg)); endcase
                                                          by R5.2, R5.14 (5.4.5)
  case [Let i=e In c1]:
    E([e], p).cont.(C([c<sub>1</sub>], p([first.reg In D/[i]])).cont.(c)
       ).dest.(first.reg); endcase
                                                          by R5.2, R5.14
                                                                             (5.4.6)
  case [Goto e]:
    E([e], p).cont.(first.reg?COD>first.reg|COD,Wrong).dest.(first.reg)
    endcase
                                                          by R5.2, R5.14 (5.4.7)
let E(node, p).cont.(k).dest.(reg) be switchon type node into
                                                                 by R5.12 (5.4.8)
{ case [i]:
    p([i]).dest.(reg); k; endcase
                                                                  by R5.3 (5.4.9)
  case [If e_1 Then e_2 Else e_3]:
    E([e,], p
     ).cont.(reg?T>
              reg→E([e<sub>2</sub>], p).cont.(k).dest.(reg),
              E([e<sub>2</sub>], <sup>2</sup>p).cont.(k).dest.(reg), Wrong
    ).dest.(reg); endcase
                                                  by R5.13/twice, R5.14 (5.4.10)
 case [Let i=e1 In e2]:
   E([e<sub>1</sub>], p).cont.(E([e<sub>2</sub>], p([reg In D/[i]])).cont.(k).dest.(reg)
      ).dest.(reg); endcase
                                                        by R5.13, R5.14 (5.4.11)
```

5.1.3 Continuation Analysis

Command Continuations: We need to interface the relative position of code fragments to the linear sequence of code instructions. We wish to to do this in such a way that the code generated for one particular construction depends on the immediate context of its appearance. The structure of continuations provides precisely this interface, since a continuation is the meaning of the rest of the program. In terms of code generation, a continuation is a reference to the starting position of the code generated for the rest of the program. That is, it must be a forward reference. Even after splitting, expression continuations preserve this property through the Destination Analysis. For example (5.1.4) specifies that the semantic value of a sequence of commands is a function that depends on the first command, the environment and a continuation value. This continuation is, in turn, a function of the second command, the environment and the continuation of the sequence. The corresponding procedural text, before the Continuation Analysis is:

case [c₁;c₂]: C([c₁], p).cont.(C([c₂], p).cont.(c)); endcase

We can see that in order to plant code for a sequence of commands we have to plant code for the first command, in the presence of the given environment and with a reference to the code planted for the second command (the .cont.(e) construction). This can be expressed as:

case [c₁;c₂]: C([c₁], p).cont.(... code yet to be planted ...); endcase

We wish to plant code sequentially, so the reference to the starting position, in the linear sequence of code instructions, of the code associated with the second command is not knownuntil code has been generated for the first one. The reference to the code generated for the second command is then a forward reference. We generalise this idea by stating that every .cont.(e) construction is a forward reference, with associated creation and fixing activity:

when
$$e_1 \neq i$$
 $e(P).cont.(e_1)A \mid = > | fix.here(continue)A | e(P).continue) [R6.9] | e(P).continue) = | e(P).continue = forward(COD) = | e(P).continue = forward(COD) = | e(P).cont.(continue) = | e(P).cont.(continue)$

In (5.5.4) we show the result of this rule when applied to the sequence of commands shown above. Note that it is up to each command to decide whether or not the forward reference is used. For example in (5.5.7), the corresponding procedure to generate code for a goto will disregard this forward reference; exactly what one would expect, since the original specification (5.1.7) also disregarded the continuation. By contrast in (5.5.5), the corresponding procedure to generate code for a while-loop makes an explicit reference to the forward reference, when breaking out of the loop in: trans.jump.if.false(first.reg, continue).

This mechanism requires a forward reference for every sequence of two commands. However, it is not the case that a label or chain should be created for every command. It is up to the particular interpretation of forward to efficiently implement forward references. In particular they should not be created until some construction really requests it. Also, the optimising transformations will use the fact that code is generated in sequence, to avoid each command planting a jump instruction to the next.

We also rename continuations appearing as formal parameters so that all continuations, now references to the code, are homogeneously named:

let
$$v(D)$$
.cont.(i)A be C | => | let $v(D)$.cont.(i)A be C [R6.10]
| | rename i=>continue

Call: The conversion for abstraction with continuations involves a lambda abstraction for the return continuation:

So that, if the return continuation is taken, a jump will be planted to exit.cont (the code generated by trans.exit).

If an abstraction is used inside an environment definition (or any other
[/] construction) then we define:

 $e(P_0, e_0([e_1/e_2], P_1)A | => | e(P_0, e_0([ntry.code/e_2], P_1)A [R6.12]$ when e_1 :TEM | $| e_3$ is the same as R6.11

5.2 Optimising Continuations

5.2.1 Flow Analysis

The way that we are handling forward references might result in a jump instruction being planted, whose effect will be to jump to the next instruction in sequence (a jump to program counter plus one). This situation can easily be trapped if we add a flag, to every forward reference passed as a parameter, which indicates whether or not its associated code will be planted immediately after. We have to delay this analysis until after the Environment Analysis, when the structure of forward references remains constant. As usual, we formalise this observation with conversion rules.

First, a transformation for a I:COD (a chain or label) passed as a parameter at the top level declaration:

let swit { ca	v(D).cont.(I)A be ichon E into ise [s]: { C_0 ; C_1 ; C_2 } => { case [s]: { C_0 ; C_3 ; C_2 } [R8.1] endcase endcase
}	An extension of the second sec
when	$C_1 = e(P) \cdot cont \cdot (I) A \text{ or } C_1 = e(P, I) A$
	e is not one of: fix.here, trans.load,
	trans.entry, trans.thunk.entry, trans.exit trans thurk with
	trans. jump. if. true or trans jump if fela,
where	C = e(P) cont (I boo) or claim Jump II I alse.
	$C_3 = C(1) + Cont.(1, boo)A or (depending on C_1) C_2 = e(P, I, boo)A$
	boo= true.jump if C ₂ :COD 1 3-477
	boo= jump otherwise

Next, a transformation for those I:COD which are either free in the procedure where this transformation is applied or locally declared (through a let but not as a formal parameter).

lĕt I [R8.2] I₁(I₀) } $C_1 = e(P).cont.(I)A \text{ or } C_1 = e(P, I)A$ when and (fixed or fixing or global) and I₁ is one of: fix.here, trans.exit or trans.thunk.exit. C₃ = e(P).cont.(I, boo)A or (depending on C₁) C₃=e(P, I, boo)Awhere fixed = I=I and E=here(P) fixing= I=I⁰ and E=forward(P) global= I free in the procedure where this transformation is applied. boo = true.jump if (fixing and C_2 :COD) or fixed or global boo = false.jump otherwise or where C_3 as before C_3 as before = true.jump if C₂:COD, boo = false.jump otherwise boo

- 107 -

5.2.2 False Jumps

Now that a flag indicates if a jump is truly required, we can eliminate those jumps where the flag is the constant FALSE. Obviously we can not eliminate those where the flag is a variable:

 $\{ C_1; C_2; C_3 \} \implies \{ C_1; C_3 \}$ when $C_{2^{\underline{-}}}$ trans.jump.to(i, false.jump) (R8.3)

This resembles the 'constant-folding' mechanism of traditional optimising compilers, applied to the flow of control instead of the analysis of expressions.

5.2.3 Conditional Jumps

The simplest form of a conditional, selecting two continuations according to the value contained in a register: reg \geq c, c', is transformed by R6.2 to: trans.jump.if.false(reg, c'); trans.jump.to(c, E), where E is either jump, not jump or true.jump as a result of R8.1 or R8.2. These two statements will generate a conditional jump, and if E evaluates to true, it will be followed by an unconditional one. For example, the generated DEC-10 code might be:

	JUMPE	reg,I	1		
	JRST	1	12		
11:	(code	for	с).	•
L2:	(code	for	c').	•

Which can be improved to:

L2:

JUMPNE reg,L2 ...(code for c)... ...(code for c')...

This case does not happen very often in our examples, but when it does, results in a multiplication of the code generated in crucial code areas like the test of an iteration. It seems necessary then to improve this area. The following transformation optimises the form of the CGP to avoid this case:

when
$$J_0 = \text{trans.jump.to}$$

 $J_1(I_0, I_1) \mid I \text{ test } E_2$
 $J_0(I_2, E_2) \mid => I \text{ then } \{^2J_2(I_0, I_2); J_0(I_1, E_1)\}$ [R8.4]
 $J_1 = \text{trans.jump.to}$
 $J_1 = \text{trans.jump.if.false or } J_1 = \text{trans.jump.if true}$
 $E_2 = \text{jump or } E_2 = \text{not jump or } E_2 = \text{true.jump}$
where $J_2 = \text{reverse of } J_1$
 $E_1 = \text{the result of } R8.1 \text{ or } R8.2$

Note that if E_2 true.jump, then the test statement above is equivalent to an if statement (conditional compilation in BCPL). Examples of the application of this rule can be found in (7.4.2) and (D.2.15).

In Snapshot 5.5 we display the last version of the transformation process for the current example of this chapter.

```
Snapshot 5.5: Flow Diagrams with Jumps. BCPL
```

```
let trans.C(node).cont.(continue, jump) be switchon type node into
                                        by R6.10, R7.5, R8.1, RA.1
                                                                      (5.5.1)
{ case T..Dummy:
   trans.jump.to(continue, jump); endcase
                                        by R6.1, R6.10, R8.1, RA.1
                                                                      (5.5.2)
 case N3..ConditionalCom:
    {0 let continue1 = forward(D..COD)
      trans.E(pl^node).cont.(continuel, false.jump).dest.(first.reg)
      fix.here(continuel)
      trans.skip.if.in(first.reg, D..T)
      trans.jump.to(Wrong, true.jump)
      { let fcond.code = forward(D..COD)
        trans.jump.if.false(first.reg, fcond.code)
        trans.C(p2^node).cont.(continue, true.jump)
        fix.here(fcond.code)
        trans.C(p3^node).cont.(continue, jump)
   }0; endcase
   by R6.1, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice
   R8.2/twice, RA.1/4 times, RA.2/6 times
                                                                     (5.5.3)
```

case N2...Sequence:

```
{ let continuel = forward(D..COD)
      trans.C(pl^node).cont.(continuel, false.jump)
      fix.here(continuel)
      trans.C(p2^node).cont.(continue, jump)
    }; endcase
    by R6.9, R6.10, R7.6/twice, R8.1, R8.2, RA.1/3 times, RA.2/3 times
                                                                 (5.5.4)
  case N2..While:
    { let restart.code = here(D..COD)
      let continuel = forward(D..COD)
      trans.E(pl^node).cont.(continuel, false.jump).dest.(first.reg)
      fix.here(continuel)
      trans.skip.if.in(first.reg, D..T)
      trans.jump.to(Wrong, true.jump)
      trans.jump.if.false(first.reg, continue)
      trans.C(p2^node).cont.(restart.code, true.jump)
    }; endcase
    by R6.1/twice, R6.2/twice, R6.3, R6.7, R6.9, R6.10, R7.6/twice
    R8.2/3 times, RA.1/3 times, RA.2/5 times
                                                                    (5.5.5)
  case N3..DefinitionByDenotationCom:
    {0 let continuel = forward(D..COD)
       trans.E(p2^node).cont.(continuel, false.jump).dest.(first.reg)
       fix.here(continuel)
       { let old.env = this.env
         declare(domain.of(first.reg), first.reg, pl^node)
         trans.C(p3^node).cont.(continue, jump)
         reset(old.env)
    }0; endcase
    by R6.9, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2, RA.1/4 times
    RA.2/3 times
                                                                      (5.5.6)
  case N1..Goto:
    { let continuel = forward(D..COD)
      trans.E(pl^node).cont.(continuel, false.jump).dest.(first.reg)
      fix.here(continuel)
      trans.skip.if.in(first.reg, D..COD)
      trans.jump.to(Wrong, true.jump)
      trans.jump.to(first.reg, true.jump)
    }; endcase
    by R6.1/twice, R6.2, R6.7, R6.9, R7.6, R8.2/3 times, RA.1/twice
    RA.2/3 times
                                                                      (5.5.7)
}
let trans.E(node).cont.(continue, jump).dest.(reg) be
                                                                      (5.5.8)
switchon type node into
                                        by R6.10, R7.5, R8.1, RA.1
{ case T..Ident:
    look.up(node).dest.(reg); trans.jump.to(continue, jump); endcase
```

by R6.1, R6.10, R7.4, R8.1, RA.1/twice (5.5.9)

Snapshot 5.5 (continued)	
case NJConditionalExp:	
{O let continuel = forward(DCOD)	
<pre>trans.E(pl^node).cont.(continuel, false.jump).dest.(reg) fix.here(continuel)</pre>	
trans.skip.if.in(reg, DT)	
trans.jump.to(Wrong, true.jump)	
{ let fcond.code = forward(DCOD)	
trans.jump.if.false(reg, fcond.code)	
<pre>trans.E(p2^node).cont.(continue, true.jump).dest.(reg) fix.here(fcond.code)</pre>	
trans.E(p3^node).cont.(continue, jump).dest.(reg)	
}0; endcase	
by R6.1, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.2/twice, RA.1/4 times, RA.2/6 times	R8.1/twice (5.5.10)
case N3DefinitionByDenotationExp:	
$\{0 \text{ let continuel} = \text{forward}(D, COD)\}$	
trans.E(p2^node).cont.(continue], false jump) doct (rec)	
fix.here(continuel)	
{ let old.env = this.env	
declare(domain.of(reg), reg, pl^node)	
<pre>trans.E(p3^node).cont.(continue, jump).dest.(reg) reset(old.env)</pre>	
<pre>}0; endcase</pre>	
by R6.9, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2, RA.1/4 times RA.2/3 times	
	(5.5.11)

5.3 Ellipsis

When adding the missing equation for blocks, we are presented with a choice of semantic 'styles' to define the value associated with each label within the block. We could express the equation with functions that collect label names and their associated continuation values in lists which are used to update the environment. This is done in [Mos74] and [MaS76]. Alternatively, we can use an ellipsis (...) which makes names and values 'visible' without the need of any extra collection, as in [Sto77]. Both methods define the same semantic value, Each one, however, corresponds to a different code generation strategy. Consider the two different styles of Snapshot 5.6. The first equation (5.6.1), in which label values are defined with <u>Fix</u>, corresponds to a one pass CGP. While the second (5.6.2), in which label

Snapshot 5.6: Blocks: two differe Semantic Equation for Blocks (Using E	nt 'styles'. Original Specification
C[Begin i ₁ :c ₁ ;i ₂ :c ₂ End]pc= Fix(\$ <c',,c''>: {<c[c<sub>1]p'c'',,C[c₂]p'c> Where p'=p[c'/[i₁]][c''/[i₂]]})*</c[c<sub></c',,c''>	1. (5.6.1)
Semantic Equation for Blocks (Using L	<u>ists)</u>
C[Begin c ₁ End]pc=	
Where p''=Fix(xp'.p[L[c ₁]p'c/I[c ₁]]). (5.6.2)
C[c ₁ ;c ₂]pc= C[c ₁]p{C[c ₂]pc}.	(5.6.3)
C[i:c ₁]pc= C[c ₁]pc.	(5.6.4)
I:[Com ≯ Ide*].	(5.6.5)
	(5.6.6)
I[i:c.]=	and the second s
<(i1).	(5.6.7)
L: [Com \Rightarrow U \Rightarrow C \Rightarrow C*].	(5.6.8)
L[c :c]pc=	
L[c ₁]p{C[c ₂]pc}%L[c ₂]pc.	(5.6.9)
L[i:c ₁]pc= <c[c<sub>1]pc>.</c[c<sub>	(5.6.10)

values are collected in lists, corresponds to a two pass CGP, since the associated code generation procedures will pass the text twice for each command, one by $C[c_1]p'c$, the other indirectly through $L[c_1]p'c$. This happens according to our particular interpretation of <u>Fix</u> and our general treatment of continuations.

This is a clear example of the way, that one can direct the structure of the CGP by expressing the concrete semantics in different ways. We have chosen

Extensions to Snapshot $c ::= Begin 1_i;1, End Switchon e Into c_1;c_2 Case n:c_1 l ::= i:cl ::= i:cl$	Snapshot 5.7: Flow Diagrams with Ellipsis.	• Original Specification
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Syntax	Extensions to Snapshot 5.1
<pre>systextic Domains 1:Loc. n:Nml.</pre> labeled com. numerals labeled com. numerals Semantics e:E=[T + C + N]. N. M=[INT + { DefM }]. p:U=[[Ide \Rightarrow D] x C]. pNDC=p\$2. N:[Nml \Rightarrow N]. N:[Nml \Rightarrow N]. I:[Nml \Rightarrow N]. Switch: Lam n(c_1,c_x) <m_1,m_x)c. for i=1 to k if m_i=DefM then c_1 otherwise c. Semantic Domain of 'Interest' Isomorphic with N INT. Semantic Domain of 'Interest' Isomorphic with N INT. E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. Mi[Case n:c_1]= I[n]. (5.7. M[Default:c_1]= DefM. (5.7. C[Case n:c_1]pc= C[c_1]pc. (5.7. C[Endcase]pc= ->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></m_1,m_x)c. 	c ::= Begin 1 ₁ ;1 ₂ End Switchon e Into c ₁ ; Default:c ₁ Endcase 1 ::= i:c	;c ₂ Case n:c ₁
JitcolJabeled com. numerals1:Loonikml.nikml.numerals1:Loonumerals $selfer[T + C + N]$.expression values integersN.M=[INT + { DefM }]. $pUl=[Ide > D] x C].$ expression values integers $pNDC=pP2.$ environments environments environments endcase selectorN: [Nml > N].integers case constants environments environments endcase selectorSwitch: [N > C* > M* > C > C].Switch= iLam ncc_1, c_>Cm_1, m_>C. for i=1 to k if m_1=DefM then c_1 i otherwise c.for i=1 to k if m_1=DefM then c_1 iSemantic Domain of 'Interest' Isomorphic with N INT.compile-time intege[an pk= k(N[n]).(5.7.[in pk= k(N[n]).(5.7.M: [Com > M].(5.7.M[Case n:c_1]= I[n].(5.7.[C] feault:c_1]= DefM.(5.7.[C] feault:c_1]pc= C[c_1]pc.(5.7.)[C] Enducase]pc= and(5.7.)	e ::= n	
$\frac{\text{Semantics}}{\text{e:E}[T + C + N]}.$ $N,$ $M = [INT + {DefM}].$ $p:U = [[Ide > D] x C].$ $p:U = [[Ide > D] x C].$ $p:U = [Ide > D] x C].$ $p:U = [Id$	l:Lco. n:Nml.	labeled com. numerals
p:D=[[Ide \Rightarrow D] x C]. pNDC==p $\forall 2$. N:[Nm1 \Rightarrow N]. I:[Nm1 \Rightarrow N]. Switch:[N \Rightarrow C \Rightarrow \Rightarrow M \Rightarrow C \Rightarrow C]. Switch:[N \Rightarrow C \Rightarrow \Rightarrow M \Rightarrow \Rightarrow C \Rightarrow C]. Switch:[N \Rightarrow C \Rightarrow \Rightarrow M \Rightarrow \Rightarrow C \Rightarrow C]. Switch:[N \Rightarrow C \Rightarrow \Rightarrow M \Rightarrow C \Rightarrow C]. Switch:[N \Rightarrow C \Rightarrow \Rightarrow M \Rightarrow C \Rightarrow C]. Switch:[N \Rightarrow C \Rightarrow C]. Semantic Domain of 'Interest' Isomorphic with N INT. E[n]pk= k(N[n]). E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. [[Com \Rightarrow M]. (5.7. M[Case n:c_1]= I[n]. (5.7. C[Case n:c_1]pc= C[c_1]pc. (5.7.) C[Default:c_1]pc= C[c_1]pc. (5.7.) C[Endcase]pc= NDCC (5.7.)	$\frac{\text{Semantics}}{\text{e:E=}[T + C + N]}.$ N. $M=[\text{INT} + \{ \text{ DefM} \}].$	expression values integers
Switch: [N > C* > M* > C > C]. Switch: [N > C* > M* > C > C]. Switch= Lam $n < c_1, \dots, c_c > m_1, \dots, m_s > c$. for i=1 to k if m_1 : INT and $n = m_1$ [INT then c_1 otherwise c. Semantic Domain of 'Interest' Isomorphic with N INT. E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. M: [Com > M]. (5.7. M[Case n:c_1]= I[n]. (5.7. C[Case n:c_1]pc= $C[c_1]pc$. (5.7. (5.7. (5.7.)	$p:U=[[Ide \Rightarrow D] \times C].$ $pNDC==p \forall 2.$ $N:[Nml \Rightarrow N].$ $I:[Nml \Rightarrow INT]$	environments endcase selector
for i=1 to k if m_1 : INT and $n=m_1$ INT then c_1 for i=1 to k if m_1 : INT and $n=m_1$ INT then c_1 otherwise c. Semantic Domain of 'Interest' Isomorphic with N INT. E[n]pk= k(N[n]). E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. M: [Com \neq M]. (5.7. M[Case n:c_1]= I[n]. (5.7. M[Default:c_1]= DefM. (5.7. C[Case n:c_1]pc= C[c_1]pc. (5.7.7. C[Default:c_1]pc= C[c_1]pc. (5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	Switch: $[N \ge C^* \ge M^* \ge C \ge C]$. Switch=	
$\frac{Semantic Domain of 'Interest' Isomorphic with N}{INT.}$ compile-time intege $E[n]pk=k(N[n]).$ $E[n]pk=k(N[n]).$ $(5.7.$ $E[n]pk=k(N[n]).$ $(5.7.$ $M:[Com > M].$ $(5.7.$ $M:[Case n:c_1]=1$ $I[n].$ $(5.7.$ $M[Default:c_1]=$ $DefM.$ $(5.7.$ $(5.7.)$ $C[Case n:c_1]pc=c(c_1]pc=c(c_1]pc)$ $(5.7.)$ $(5.7.)$	for i=1 to k if m.:INT and n=m. INT then c for i=1 to k if mi=DefM then c_i otherwise c.	
E[n]pk= k(N[n]). (5.7. E[n]pk= k(N[n]). (5.7. M:[Com ≥ M]. (5.7. M[Case n:c ₁]= I[n]. (5.7. M[Default:c ₁]= DefM. (5.7. C[Case n:c ₁]pc= C[c ₁]pc. (5.7. C[Default:c ₁]pc= C[c ₁]pc. (5.7.7) C[Endcase]pc= DefM. (5.7.7)	Semantic Domain of 'Interest' Isomorphic with N INT.	compilerting ist
$E[n]pk= (5.7.)$ $E[n]pk= (5.7.)$ $M:[Com > M]. (5.7.)$ $M[Case n:c_1]= (5.7.)$ $M[Default:c_1]= (5.7.)$ $M[Default:c_1]= (5.7.)$ $C[Case n:c_1]pc= (5.7.)$ $C[Case n:c_1]pc= (5.7.)$ $C[Default:c_1]pc= (5.7.)$	E[n]pk=k(N[n]).	compile-time integers
k(N[n]). (5.7. M: [Com \Rightarrow M]. (5.7. M[Case n:c ₁]= I[n]. (5.7. M[Default:c ₁]= DefM. (5.7.) C[Case n:c ₁]pc= C[c ₁]pc. (5.7.) C[Default:c ₁]pc= C[c ₁]pc. (5.7.7) C[Endcase]pc= $and base non- c[c_1]pc non- c[c_1$	E[n]pk=	(5.7.1)
<pre>(5.7. M[Case n:c₁]= I[n]. (5.7. M[Default:c₁]= DefM. (5.7. C[Case n:c₁]pc= C[c₁]pc. (5.7. C[Default:c₁]pc= C[c₁]pc. (5.7.7) C[Endcase]pc= NDC</pre>	K(N[n]). M: [Com \Rightarrow M].	(5.7.2)
$I[n]. $ $M[Default:c_1] = $ $DefM. $ $C[Case n:c_1]pc = $ $C[c_1]pc. $ $C[Default:c_1]pc = $ $C[c_1]pc. $ $C[Endcase]pc = $ $DVDC $ $(5.7.7)$	M[Case n:c,]=	(5.7.3)
$M[Default:c_1] = $ $DefM. (5.7.)$ $C[Case n:c_1]pc = $ $C[c_1]pc. (5.7.)$ $C[Default:c_1]pc = $ $C[c_1]pc. (5.7.)$ $C[Endcase]pc = $ $NDC (5.7.)$	I[n].	(5.7.4)
$C[Case n:c_1]pc= (5.7.6)$ $C[Case n:c_1]pc= (5.7.6)$ $C[Cefault:c_1]pc= (5.7.7)$ $C[Endcase]pc= (5.7.7)$	DefM.	(5.7.5)
$C[Default:c_1]pc=C[c_1]pc.$ $C[Endcase]pc=$ NDC $(5.7.7)$	C[Case n:c ₁]pc= C[c ₁]pc.	(5.7.6)
C[Endcase]pc=	C[Default:c ₁]pc= C[c ₁]pc.	(5.7.7)
pNDC. (5.7.8	C[Endcase]pc= pNDC.	(5.7.8)

Snapshot 5.7 (continued)	and the second
$ \begin{array}{l} \hline \textbf{C[Switchon e Into c_1;c_]pc=} \\ \textbf{E[e]p{}:e.e?N > Switch(e N) < C[c_1]p'c,,C[c_2]p'c > < M[c_1],. \\ \hline \textbf{Where }p'=p[c/NDC]. \end{array} $,M[c ₂]>c,Wrong} (5.7.9)
C[Begin 1 ₁ ;1 ₂ End]pc= Fix($\chi < c',, c'' > .$ $\{ < C(2 \neq [1_1]) p' c'',, C(2 \neq [1_2]) p' c >$ Where $p' = p[c' \text{ In } D/1 \neq [1_1]] [c'' \text{ In } D/1 \neq [1_2]] \}) \neq 1.$	(5.7.10)

the ellipsis method for no special reason and not because a two pass CGP is uninteresting. Further research could easily incorporate the second method.

We will also extend the language used in [Sto77] by adding a Switchon statement. This feature also is conveniently defined using an ellipsis making a nice companion to the block. Snapshot 5.7 shows the required modifications and extensions to the original specification of Snapshot 5.1.

In this specification, we are using the operator **t** and a short hand for expressions inside ellipsis which have different interpretations depending on context:

Semantic Context $\cdot \bullet : [[[D_1 \times \cdots \times D_n] \times N] \ge D_k]$ $d = \langle D_1, \cdots, d_k, \cdots, d_n \rangle : [D_1 \times \cdots \times D_k \times \cdots \times D_n]$ k:N and $1 \leq k \leq n$ $d \neq k$ and also $k \neq d = d_k$

[D11]

Syntactic Context $. \mathbf{v}_{\cdot}: [S \times N] \neq S_k]$ $[s]=[s_1 \cdots s_n]:S$ $k:N \text{ and } 1 \leq k \leq n$ $[s] \mathbf{v}_k \text{ and also } k\mathbf{v}[s] = [s_k]$

[D12]

So that **v** is used to extract individual components of tuples or nodeoffspring. In a syntactic context: [$s_1 \dots s_2$] is short for: [$s_1 \dots s_k \dots s_n$]. And in a semantic context: $\langle f(i', i''), \dots, g(i'') \rangle$ is short for: $\langle f(i_1, i_2), \dots, f(i_k, i_{k+1}), \dots, g(i_n) \rangle$

where $1 \leq k \leq n$.

So (5.7.10) in effects stands for:

C	[Begin $i_1:c_1; \dots i_k:c_k; \dots i_k:c_k$ End]pc=
	$Fix(x < c_1, \ldots, c_k, \ldots, c_n)$.
	$\{(C([c_1])p'c_2,,C([c_k])p'c_{k+1},,C([c_n])p'c\}$
	where $p = p[c_1 \text{ in } D/[i_1]] \cdots [c_k \text{ in } D/[i_k]] \cdots [c_n \text{ in } D/[i_n]]$

The reason for this is that under certain constraints imposed by this treatment, the use of ellipsis in our transformations is much more simplified. An example of the kind of restriction imposed is reflected in the semantic specification of the switchon statement (5.7.9). It is not the same as the corresponding statement in BCPL. We have to avoid control dropping into the next case statement, because this requires an explicit c_{k+1} . So our example is rather like a PASCAL case than a BCPL switchon statement. In short, in WFF_t, sub-indices cannot be expressions, and we are left only with decorations (quotes or digits) which we have to assume refer to the next item in the ellipsis.

5.3.1 Syntactic Transformations

Having presented this restricted use of ellipsis, we move now to consider the required transformations. An ellipsis in a syntactic element denotes a n-ary node of the parse tree. The first requirement is to open this node, to be able to see every sub-component:

case [
$$s_1 \cdots s_n$$
]:
[$s_1 \cdots s_n$]: | => | e
e | | close.node(n)
| | } rename [s_1]=>select(n, inx)
| | [s_1]=>select(n, length(n))
| |] n=>node.vec

This rule produces the desired effect, we can see every element of a node by means of the <u>select</u> primitive. However, BCPL provides a quick way of accessing elements of a vector with the '!' operator (defined in Appendix C). Also, later rules require a general mechanism to release other sort of data structures, hence instead of <u>close.node</u> we shall use a primitive named <u>freevec</u> (which happens to be a suitable BCPL library routine). Accordingly, we rewrite this rule as:

case [
$$s_1 \dots s_n$$
]:
[$s_1 \dots s_n$]: | => | e [R3.7]
e | | freevec(n)
| | | rename [s_1]=>n!inx, [s_n]=>n!!n,
| | n=>node.vec

<u>open.node</u> is a primitive procedure which depends on the structure of the nary node. It stores each individual offspring in a different cell of a vector, returning a pointer to that vector (with the size stored in its zero word). Each sub-component can then be accessed via node.vec!inx, and the size with !node.vec (equivalent to node.vec!0). <u>freevec</u> releases the space occupied by the vector. <u>inx</u> is used in relation to the transformations below. A pre-condition imposed by this transformation is that every ellipsis, used inside the expression 'e' above, has to have the same length as the ellipsis of its parent node. In Snapshot 5.8 we show the result of this transformation, together with those corresponding to the Normalisation and Syntactic Transformations.

```
Snapshot 5.8: Flow Diagrams with Ellipsis. Syntactic Transformations
  let C(node, p, c) be switchon type node into
                                                          by R1.1, R3.1
  { case [Case n:c1]:
                                                                           (5.8.1)
    C([c<sub>1</sub>], p, c); endcase
                                                          by R1.1, R3.2
                                                                          (5.8.2)
    case [Default:c1]:
      C([c_1], p, c); endcase
                                                         by R1.1, R3.2
                                                                          (5.8.3)
    case [Endcase]:
   p(NDC); endcase
                                                         by R1.1, R3.2
                                                                        (5.8.4)
   case [Switchon e Into c<sub>1</sub>; ...c<sub>2</sub>]:
   { let node.vec2 = open.node(p2<sup>node</sup>)
       { let p' = p([c/NDC])
          E([e], p, ke.e?N>
                       Switch(e|N, <C(node.vec2!inx, p', c),...,</pre>
                                     C(node.vec2!!node.vec2, p', c)
                                    >, <M(node.vec2!inx),...,
                                        M(node.vec2!!node.vec2)
                                       >, c), Wrong)
       freevec(node.vec2)
     }; endcase
                             by R1.1, R1.3, R3.2/7 times, R3.3, R3.7 (5.8.5)
   case [Begin 1<sub>1</sub>; ...1<sub>2</sub> End]:
     { let node.vec = open.node(node)
       Fix()<<',...,c''>.
            <C(2#node.vec!inx, p', c''),...,
               C(2#node.vec!!node.vec, p', c)
              >
            }) #1
      freevec(node.vec)
    }; endcase
                            by R1.1, R1.3, R3.2/4 times, R3.3, R3.7
                                                                         (5.8.6)
}
let E(node, p, k) be switchon type node into
                                                      by R1.1, R3.1
                                                                         (5.8.7)
{ case ...
  case [n]:
    k(N([n])); endcase
                                                 by R1.1, R3.2/twice (5.8.8)
}
let M(node) be switchon type node into
                                                        by R1.1, R3.1
                                                                         (5.8.9)
{ case [Case n:c,]:
I([n]); endcase
                                                       by R1.1, R3.2 (5.8.10)
  case [Default:c1]:
    DefM; endcase
                                                              by R1.1 (5.8.11)
```

Note that in WFF_m ' ψ ' has lower precedence than '!'.

It might be argued that this method it too biased to the systems programming language BCPL, which we are using as target. Or that we are imposing, in this correspondence, one particular strategy of our own, which might not be general enough. What we are in effect showing is a mechanism, one way to achieve the analysis necessary to transform semantic equations into a particular form suitable for an algorithmic interpretation.

5.3.2 Continuation Analysis

We start by looking at those tuples containing ellipsis. Since in our examples, this kind of tuple is used only to define either procedures or functions (in TEM), code structures (in COD) or constants,. We will assume that they are not used for anything else.

 \Rightarrow { $C_1; C_2; C_3; C_4$ } [R6.13] <e1,...,e,> $C_1 = 1et c' = E$ where = for inx=1 to s-1 do C_f = unless s=0 do C_u C $\frac{3}{1} = \text{freevec(c)}$ С e_i^4 :D for i=1 to n { e₁; fix.with(c!inx,r) } if DCTEM C_f=| { fix.here(c!inx); e₁ } if DCCOD otherwise $c!inx := e_1$ { e_n; fix.with(c!s,r) } if DCTEM { fix.here(c!s); e_n } if DCCOD $C_u = 1$ otherwise c!s rename s=>!node.vec c=>DC[COD+TEM]>code.vec, cons.vec E=>DC[COD+TEM]>forward.vec(s, D), newvec(s) r=destination of e,

forward.vec gets as many forward references as indicated by its first parameter, storing them in a vector and returning a pointer to it. <u>newvec</u> gets a vector without initialising it. <u>fix.with</u> has to plant code to move the closure value kept in the destination indicated by its second parameter to the object described in its first parameter.

Next, two transformations for lists (indicated with a '*') appearing as parameters of a procedure call. The first one for lists which do not produce code. The second one, for those that do, requires a skip over the code that will be generated. In both cases we transform, as above, moving C_4 after the

call, and replacing the parameter by the reference to the vector:

when
$$e_0(P_0, e_1, P_1)A \Rightarrow \{C_1; C_2; C_3; C_5; C_4\}$$
 [R6.14]
where $e_1:D^*$ and not DCCOD
where C_1, C_2, C_3 and C_4 are inherited from the transformation of e_1 as a
result of R6.13

 $C_5 = e_0(P_0, \text{ cons.vec}, P_1)A$

when where rename

S=

$$e_{0}(P_{0}, e_{1}, P_{1})A \xrightarrow{|} e_{0}(P_{0}, e_{1}, P_{1})A \xrightarrow{|} e_{1} \xrightarrow{|} C_{2}; C_{3} \xrightarrow{|} C_{2}; C_{3} \xrightarrow{|} C_{1}, C_{2}, C_{3} \xrightarrow{|} C_{4} \xrightarrow{|} C_{$$

For the minimal fix point finder of a code list we require:

Fix($\{\langle i_1, \ldots, i_n \rangle, \{ C_0; e_1 \}$) => { $C_1; C_0; C_2; C_3; C_5; C_4$ } [R6.16] when $e_1:COD*$ and $e_1 = \langle e_1, \ldots, e_n \rangle$ where $C_1 = e(P_0, code.vec, P_1)A$ C_1, C_2, C_3 and C_4 same as R6.14 rename $i_1 = \rangle code.vec! inx, i_n = \rangle code.vec! node.vec$

And finally, selecting a particular element of a list can in certain cases be ignored:

e:COD* nt/e or et/n => C; e when [R6.17] where C = null if n=1 C = trans.jump.to(code.vec!n) otherwise

5.3.3 Environment Analysis

Multiple declarations using the ellipsis are iteratively treated as follows:

when i:ENV i(P) => { C_1 ; C_2 } [R7.7] where $P = [e_1/e_2], \dots, [e_3/e_4]$ $C_1 = \text{ for inx=1 to s-1 do declare(e_2, e_1)}$ $C_2 = \text{ unless s=0 do declare(e_4, e_3)}$ rename s => ! node.vec

5.3.4 Optimising Continuations

We also optimise for-unless constructions. When the last expression in the ellipsis is appropriately related to those in the iteration:

	for $I=e_0$ to e_1	-1	1			$_{1} \in \overline{\mathbb{G}}_{n}$
	do C_1 unless $e_1=0$	=>	for	I=e ₀ to e ₁	do C ₁	[R8.5]
when	$C_{1} = [I/e_{1}]C_{2}^{2}$		L			

5.3.5 BCPL

Firstly ψ , which as explained above is used to extract individual components of tuples or node-offspring: In BCPL this is done via 'selectors', the following transformation makes up a selector name by juxtaposition of the character 'p' and the integer 'n':

nve or evn => pn^e where pn is a 'selector' [RA.6] And secondly, instead of BCPL procedures which generate code, when a semantic valuator is associated with a constant value (like in M), we make functions with the BCPL valof and resultis constructions:

let v(P) be C => let v(P)=valof C [RA.7] when not v(P):COD

and for every case inside C above:

case I: E; endcase => case I: resultis E [RA.8] These rules describe basically what we require, in effect there are other

cases to consider, like when E in RA.8 is in fact a block, we leave this unspecified since it is not required for our example.

Snapshot 5.9: Flow Diagrams with Ellipsis. BCPL let trans.C(node).cont.(continue, jump) be switchon type^node into by R4.5, R6.10, R7.5, R8.1, RA.1 (5.9.1){ case N2..Case: trans.C(p2^node).cont.(continue, jump); endcase by R4.6, R6.10, R7.6, R8.1, RA.1/twice, RA.2 (5.9.2)case N1..Default: trans.C(pl^node).cont.(continue, jump); endcase by R4.6, R6.10, R7.6, R8.1, RA.1/twice, RA.2 (5.9.3)case T..Endcase: trans.jump.to(look.up(NDC), true.jump); endcase by R6.1, R7.4, R8.2, RA.1 (5.9.4)case N2...Switchon: { let node.vec2 = open.node(p2^node) { let old.env = this.env declare(D..COD, continue, NDC) {0 let continuel = forward(D..COD) trans.E(pl^node).cont.(continuel, false.jump).dest.(first.reg) fix.here(continuel) trans.skip.if.in(first.reg, D..N) trans.jump.to(Wrong, true.jump) { let cons.vec2 = newvec(!node.vec2) let code.vec2 = forward.vec(!node.vec2, D..COD) let skip.code = forward(D..COD) trans.jump.to(skip.code, true.jump) for inx=1 to !node.vec2 do { fix.here(code.vec2!inx) trans.C(node.vec2!inx).cont.(continue, true.jump) } fix.here(skip.code) for inx=1 to !node.vec2 do cons.vec2!inx := trans.M(node.vec2!inx) Switch(first.reg, code.vec2, cons.vec2).cont.(continue, jump) freevec(code.vec2) freevec(cons.vec2) }0 reset(old.env) freevec(node.vec2) }; endcase by R4.2, R4.6/3 times, R5.2, R5.14, R6.1, R6.2, R6.7, R6.9 R6.10/4 times, R6.13/twice, R6.14, R6.15, R7.2, R7.3, R7.6/3 times R8.1/3 times, R8.2/3 times, R8.5/twice, RA.1/twice, RA.2/8 times

```
(5.9.5)
```

```
case NX. . Block:
   { let node.vec = open.node(node)
      { let old.env = this.env
       let code.vec = forward.vec(!node.vec, D..COD)
       for inx=1 to !node.vec
       do declare(D..COD, code.vec!inx, pl^node.vec!inx)
       for inx=1 to !node.vec-1
       do { fix.here(code.vec!inx)
            trans.C(p2^node.vec!inx).cont.(code.vec!(inx+1), false.jump)
           }
       unless !node.vec=0
       do { fix.here(code.vec!!node.vec)
            trans.C(p2^node.vec!!node.vec).cont.(continue, jump)
           }
        freevec(code.vec)
       reset(old.env)
      }
     freevec(node.vec)
   }; endcase
   by R4.6/twice, R6.10, R6.13, R6.16, R6.17, R7.2, R7.3, R7.6/twice, R7.7
                                                                     (5.9.6)
   R8.1, R8.2, R8.5, RA.1, RA.2/4 times, RA.6/3 times
}
let trans.E(node).cont.(continue, jump).dest.(reg) be
                          by R4.3, R5.12, R6.10, R7.5, R8.1, RA.1 (5.9.7)
switchon type node into
{ case ...
  case T..Numeral:
    trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase
                by R4.1, R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2 (5.9.8)
}
                                                     by RA.1, RA.7 (5.9.9)
let trans.M(node) = valof switchon type node into
{ case N2..Case:
                                         by RA.1/twice, RA.2, RA.8 (5.9.10)
    resultis trans.I(pl^node)
  case N1..Default:
                                                     by RA.1, RA.8 (5.9.11)
    resultis DefM
```

- Kanne 71

5.4 Further Developments: GEDANKEN

The rules described in this section are only required for GEDANKEN. All references below to (E.l.x) and (E.2.y) refer respectively to the Original Specification and final CGP in BCPL as shown in Appendix E.

One of our WFF_S forms of ellipsis allows the definition of 'iterative' lambda expressions of the form:

xp. ...e

In GEDANKEN, this form of ellipsis is used in the sequence constructions of expressions (E.1.10) and parameters (E.1.20), as reproduced in Snapshot 5.10:

 $\label{eq:snapshot 5.10: GEDANKEN: Sequences. Original Specification} \\ \hline E[e_1, \cdots, e_2]pk= \\ E[e_1]p\{\lambda e. \cdots E[e_2]p\{\lambda e'.k\{Seq < e, \dots, e'>\}\}\}. \\ (5.10.1) \\ P[p_1, \cdots, p_2]pex= \\ Ccoerce \ e \\ \{\lambda e.e?F \neq U[p_1]p\{e|F\}1\{\lambda p'. \cdots U[p_2]p'\{e|F\}(\#[p_1, \cdots, p_2])x\}, Cerror\} \\ (5.10.2) \\ \hline \end{array}$

Such expressions would appear at the level of the Syntactic Transformations as a parameter of a call of the form:

$$e_0(P, i. ...e)$$

This expression in effect is short for:

$$e_0(P, \lambda i_1 \cdot e_0(P, \lambda i_2 \cdot \cdots e_0(P, \lambda i_k \cdot \cdots e_0(P, \lambda i_n \cdot e) \cdots))$$

where 1<=k<=n

n is the size of the node where the ellipsis occurred. So Snapshot 5.11 in effect stands for Snapshot 5.12.

```
Snapshot 5.11: GEDANKEN: Sequences. Syntactic Transformations
 case [e<sub>1</sub>, ...,e<sub>2</sub>]:
  { let node.vec = open.node(node)
      E(node.vec!inx, p,
         ke. ...E(node.vec!!node.vec, p, ke'.k(Seq(<e,...,e'>))))
      freevec(node.vec)
                                               by R1.1, R3.2/4 times, R3.7 (5.11.1)
   }; endcase
 case [p<sub>1</sub>, ..., p<sub>2</sub>]:
   { let node.vec = open.node(node)
      Ccoerce(e,
                 ke.e?F>
                    U(node.vec!inx, p, e|F, 1,
                       xp'. ...U(node.vec! !node.vec, p', e|F,
                                    #[p<sub>1</sub>, ... ,p<sub>2</sub>], x)),Cerror)
      freevec(node.vec)
                                                 by R1.1, R3.2/3 times, R3.7 (5.11.2)
   }; endcase
Snapshot 5.12: GEDANKEN: Sequences (in effect). Syntactic Transformations
 case [e<sub>1</sub>, e<sub>2</sub>,...,e<sub>k</sub>,...,e<sub>n</sub>]:
  { let node.vec = open.node(node)
      E(node.vec!1, p, Xe1.
       E(node.vec!2, p, ke2.
          E(node.vec!k, p, ke.
            ...
             E(node.vec!n, p, ken.
      k(Seq(\langle e_1, e_2, \dots, e_k^n, \dots, e_n \rangle))) \dots) freevec(node.vec)
  }; endcase
```

. . .

```
U(node.vec!k, p, e|F, k, xp'.
```

```
U(node.vec!n, p', e|F, n, x)...)),
```

and streng along and to average as

Cerror)

freevec(node.vec)
}; endcase

```
Snapshot 5.13: GEDANKEN: Sequences. Splitting Continuations
case [e<sub>1</sub>, ...,e<sub>2</sub>]:
  { let node.vec = open.node(node)
    for inx=1 to !node.vec-1
    do E(node.vec!inx, p).cont.(...).dest.(e)
    unless !node.vec=0
    do E(node.vec!!node.vec, p).cont.(Seq(<e,...,e'>); k).dest.(e')
    freevec(node.vec)
  }; endcase
                                           by R4.1, R4.2, R4.6, R4.7 (5.13.1)
case [p<sub>1</sub>, ..., p<sub>2</sub>]:
   { let node.vec = open.node(node)
    Ccoerce(e
            ).cont.(e?F>
                     for inx=1 to !node.vec-1
                     do U(node.vec!inx, p, e|F, inx).cont.(...).dest.(p')
                     unless !node.vec=0
                    do U(node.vec!!node.vec, p', e|F, #[p_1, \dots, p_2]
                         ).cont.(x).dest.(?),Cerror).dest.(e)
    freevec(node.vec)
 }; endcase
                                           by R4.2, R4.4, R4.6, R4.7 (5.13.2)
```

5.4.1 Splitting Continuations

Such 'syntactically sugared' form of ellipsis involves in these two cases, an iterative definition of an expression continuation (5.11.1) and of an environment continuation (5.11.2) which are transformed as follows:

when e_0 :KON $e_0(P, \lambda i. \dots e) | => | do e_0(P).cont.(\dots).dest.(i)$ [R4.7] | unless !node.vec=0 do e

The .cont.(...) construction, is a temporary expression which indicates a reference to the position, in the linear sequence of code instructions, of the code generated by the next iteration. This is a forward reference which is analysed below in the Continuation Analysis. The result of this and all other Splitting Continuations rules, when applied to Snapshot 5.11 results in Snapshot 5.13.

5.4.2 Destination Analysis

Iterative Creation: In (5.13.1), the iteration is producing values which need to be preserved until the next statement outside the iteration is reached. This requires a dump operation, expressed as:

<u>this.off</u> is a global primitive variable containing a description of the current workspace area. It is used to remember the beginning of the 'dumping' area in <u>old.off</u>. In such a way that e₃, instead of expecting a tuple as a parameter, expects <u>old.off</u> which, together with the now different description associated with <u>this.off</u>, define the boundaries of the area where the tuple values have being dumped.

Iterative Conservation: The rule above, applies when registered values are defined in each iteration. Those that need to be preserved during the whole iteration require a dump operation before the iteration starts, and a load at each step.

when
$$C_1 = e_1(P_1, I_1, P_2)A$$

 $I_1 : REG and any C_2$
where $C_3 = \{ C_1; trans.Ioad(DOM(I_1), dmp.loc).dest.(I_1) \}$
 $\left\{ \begin{array}{cccc} let dmp.loc = trans.dump(I_1) \\ for I=1 to E do C_3 \\ for I=1$

Parameters: When a value in REG is passed as a parameter at a top level procedure declaration, by symmetry, we rename it throughout the body of the procedure:

let $v(D_0, i, D_1)$ be $C \mid \Rightarrow \mid$ let $v(D_0, i, D_1)$ be $C \mid R5.18$] when i:REG

so that now all REG values are homogeneously named.

Dyadic Operations: In (E.1.9), the semantic equation for a case statement, the relational operator '=' is used to test for a particular run-time registered value. Associated with R6.2 we define a transformation rule for all relational dyadic operators:

 $e_0 oe_1 \Rightarrow$ trans.skip.if(i.skipXX, e_0, e_1) [R5.19] when e_0 :REG and e_1 :REG and o is one of: =, Eq, Ne, Ls, Le, Gr, Ge where XX is respectively one of: EQ, EQ, NE, LT, LE, GT, GE

trans.skip.if generates a skip instruction whose nature is indicated by the primitive constant value i.skipXX. An example of a transformation by R5.19 can be found in (E.2.9).

In Snapshot 5.14, we show the current state of both sequencing constructs.

5.4.3 Continuation Analysis

Conditional Skip: R5.19 requires a further extension to R6.2 similar to that one of section 4.3.2 to deal with run-time type checking. There, the code associated with the boolean part of a conditional was a test and skip instruction. Now R5.19 introduces precisely the same sequence.

```
Snapshot 5.14: GEDANKEN: Sequences. Destination Analysis
case [e1, ...,e2]:
  { let node.vec = open.node(node)
    { let old.env = this.env
      let old.off = this.off
      for inx=1 to !node.vec-1
      do { E(node.vec!inx, p).cont.(...).dest.(reg); trans.dump(reg) }
      unless !node.vec=0
      do E(node.vec!!node.vec, p
          ).cont.(trans.dump(reg); Seq(old.off).dest.(reg); k
           ).dest.(reg)
      reset(old.env)
    }
    freevec(node.vec)
                                                  by R5.14, R5.16 (5.14.1)
 }; endcase
case [p<sub>1</sub>, ..., p<sub>2</sub>]:
  { let node.vec = open.node(node)
    Ccoerce(reg
            ).cont.(first.reg?F→
                    { let dmp.loc = trans.dump(first.reg)
                      for inx=1 to !node.vec-1
                      do (U(node.vec!inx, p, first.reg|F, inx).cont.(...)
                          trans.load(F, dmp.loc).dest.(first.reg)
                          ).dest.(p')
                      unless !node.vec=0
                      do U(node.vec!!node.vec, p', first.reg|F,
                           #[p<sub>1</sub>, ..., p<sub>2</sub>]).cont.(x).dest.(?)
                    },Cerror
             ).dest.(first.reg)
    freevec(node.vec)
                                     by R5.14, R5.15, R5.17, R5.18 (5.14.2)
  }; endcase
```

So once more, we extend the when and where constructions of R6.2 as follows:

```
Snapshot 5.15: GEDANKEN: Sequence of Parameters. Continuation Analysis
        case [p<sub>1</sub>, ..., p<sub>2</sub>]:
   { let node.vec = open.node(node)
            {0 let continue2 = forward(COD)
            Ccoerce(reg).cont.(continue2).dest.(first.reg)
               fix.here(continue2)
  trans.skip.if.in(first.reg, F)
               trans.jump.to(Cerror)
{ let dmp.loc = trans.dump(first.reg)
                 for inx=1 to !node.vec-1
                 do ({ let continuel = forward(COD)
                      U(node.vec!inx, p, first.reg|F, inx).cont.(continuel)
                       fix.here(continue1)
  trans.load(F, dmp.loc).dest.(first.reg)).dest.(p')
                unless !node.vec=0
        do U(node.vec!!node.vec, p', first.reg|F, #[p<sub>1</sub>, ..., p<sub>2</sub>]
                    ).cont.(continue
                     ).dest.(?)
           10
         freevec(node.vec)
         }; endcase
                                by R6.1, R6.2, R6.7, R6.9, R6.10, R6.18 (5.15.1)
```

Iteration: Recall that in R4.7 above we introduced an expression of the form .cont.(...) when analysing expressions continuations in KON with ellipsis of the form: >p. ... e. The .cont.(...) construction denotes the code planted in the next iteration of the for loop produced by R4.7, this is a forward reference, for which we already have enough machinery to transform appropriately:

 $e(P).cont.(...)A \mid = \rangle \mid \begin{cases} let continue = forward(COD) \\ e(P).cont.(continue)A \\ | \\ | \\ fix.here(continue) \end{cases} [R6.18]$

The way that this rule affect the procedural text associated with the sequence of expressions is so similar to the way that the sequence of parameters is affected that we proceed by displaying the latter only, as shown in Snapshot 5.15.

5.4.4 Environment Analysis

The process of Splitting Continuations, as described in section 5.1.1, is applied not only to expression continuations in [REG>COD], but also to environment continuations in [ENV>COD]. This particular analysis affects a few cases in the analysis of GEDANKEN. There are two moments to consider: declaration and elimination.

Declaration: In section 4.4, we defined R7.1 and R7.3 to transform the definition of a new environment with a declare-undeclare pair. Now we need a similar rule to transform the equivalent case of a declaration continuation. This rule is used in GEDANKEN in the equations for a non-recursive declaration (E.2.15) and of an abstraction (E.2.26):

					1 {	<pre>let old.env = this.env</pre>	
	*	{	e(P)A.dest.(i)	1	1	e(P)A	- Aller and a
when	i:ENV	11	C	1 =	> 1	C C C C C C C C C C C C C C C C C C C	[R7.8]
		}		1	1	reset(old.env)	
				1	1 }		1

Elimination: Recall R7.6, the rule that eliminated environments from parameter lists. Such elimination was possible because of the existence of a global symbol structure. For the same reason, we introduce below a few rules to eliminate the environment in three other constructions.

In Snapshot 5.15, and as a result of R4.7, we find an iterative construction defining a new environment in each iteration:

for I=1 to E $| \Rightarrow |$ for I=1 to E [R7.9] do e(P)A.dest.(i) | | do e(P)A

Also, in (E.2.21), and as a result of R4.1, an environment might appear as a single variable standing in a block as a statement:
when i:ENV { C_0 ; i; C_1 } => { C_0 ; C_1 }

In Snapshot 5.15, (E.2.22) and (E.2.28) and as a result of R4.4 which introduced undefined environments of the form .dest.(?:d) with dCENV: when dCENV $e(P)A.dest.(?:d) \implies e(P)A$ [R7.11]

[R7.10]

Snapshot 5.16 shown the result of the Environment Analysis.

....

5.4.5 BCPL

C.

Inc. 454

Finally, two more transformation rules from WFF_s to WFF_t. In (5.16.1), the WFF_s operator '#' is used to denote the size of the sequence. In WFF_t this size is accessed with a selector:

$$[s_1 \cdots s_n] \implies size^{[s_1 \cdots s_n]}$$
 [RA.9]

An integer expression, such as size^E, a constant, or !node.vec, which is not used as a control structure, but as a code generation value, needs to be given a descriptor (a type definition) so that the machine interface can interrogate it. This distinguishes it from other expressions like a location, an instruction, or a pointer to the symbol table.

when
$$e_1$$
: INT $e_0(P_0, e_1, P_1)A \rightarrow e_0(P_0, e_2, P_1)A$ [RA.10]
 μ where e_2 =make.num(e_1)

The primitive function <u>make.num</u> provides such a data definition. The internal 'domain of interest' INT, indicates the 'compile-time' integers. The numerals, the **for** loop control variable and the size of vectors and syntactic nodes are all in INT, namely: n:INT, inx:INT, !E:INT and size^E:INT. The result of these rules can be found in (E.2.9) and (E.2.20).

CHAPTER 6

The Lambda Calculus

this In chapter we describe a correspondence between the Standard Denotational Semantics of the Lambda Calculus(LC) and a Code Generation Process. Two semantics are considered in turn, both based on [Rey74] as described in [Sto77] and extended with a few basic constructions to allow the translation of realistic programs. The first semantics is direct. The second utilises continuations in a way we have seen in previous chapters. Apart from the new transformations required to distinguish between call-byvalue and call-by-name, the important aspect of this chapter is the degree of confidence of the correctness of our transformational system that results from the comparison between both direct and continuation cases. The resultant CGPs, two programs derived from two congruent specifications are different but produce the same code in the examples we tried.

6.1 Direct Semantics

In this section, the first version of the semantics of the lambda calculus is transformed from the original specification of Snapshot 6.1 in the source metalanguage WFF_s, up to the final target version in BCPL (WFF_r).

6.1.1 Syntactic Transformations

Non-Strict And Thunk: Consider the definition of Strict:

Strict
$$(\lambda i \cdot e)(e_1) = |$$
 Bot, Top or ? If e_1 is Bot, Top or ?
| [D13]

The function returned by Strict, is that which, if applied to an improper

Surportion Catogories	
Syntactic Categories	identifiers
1:1de.	numerals
n:Num.	lambda-expressions
e:Exp.	operators
o:opr.	aplant arrive H4 of the
Syntax	AND
$e ::= i n e_0 e_2 e_1 e_2 Lam 1.e_1 Lam val 1.e_1 $	>= ¹ #
0 ::= + 1 - 1 ··· 1 / 1 / (1 ··· 1 · 1 ··· 1	TANK ON TRADES
Semantic Domains	truth values
Τ.	integers
N.	ovpression values
$w:W=[N + T + F + \{ Err \}].$	expression values
$f:F=[W \ge W]$.	runction values
$p:U=[Ide \neq W]$.	environments
Semantic Domains of 'Interest'	when any or of There are
ENV=U.	environments
REG=W.	registered values
TEM=F.	templates
Semantic Primitives(undefined)	
N. [Num > N]	
$0:[Opr \neq W \neq W].$	
a	
Filter > II > W].	(6.1.1
F:[Fxb > 0 \ #].	
E[i]p=	(6.1.2
p[i].	(0.1.2
Fining	and the second sec
N[n].	(6.1.3
in and a solution of the minister of the solution	
$ \begin{array}{c} E[e_1 oe_2]p=\\ (Xww^{\bullet} \cdot O[o]ww^{\bullet})(E[e_1]p)(E[e_2]p) \end{array} $	(6.1.4
$ \begin{array}{l} \mathbb{E}[e_1e_2]p=\\ (\mathbf{x}w\cdot w?F \neq (\mathbf{x}w' \cdot (w F)w')(\mathbb{E}[e_2]p), \mathbb{E}rr)(\mathbb{E}[e_1]p). \end{array} $	(6.1.5
E[Lam i.e ₁]p=	(6.1.6
<pre>%w.E[e1](b[m/[1]]).</pre>	sanat aliang m8 kelab
E[Lam Val i.e.]p=	And Anther States In The States
	10-1-

Believe H. Maine and M. Jailan M. Portage .

astantia (p)(see(______

value, returns also an improper value. We can think of a strict function as 'looking' at its argument as soon as applied. Whereas a non-strict function will 'disregard' its argument until needed. In implementation terms, this corresponds respectively to call-by-value and call-by-name (or the more efficient call-by-need). But the way that these two features are implemented, influence not only the defined function, but also any and all of its applied occurrences. In the former case, an argument is 'evaluated' and passed to the function; in the latter, arguments are not 'evaluated', but associated with a special kind or function called a 'thunk' after P.Z.Ingerman [Ing61]. These are like mini-functions without arguments and with the environment already bound in. For more implementation details of thunks see [Gri71] or [Bor79]. In the version of the lambda calculus that we have chosen to work with, both forms coexist, the strict abstraction in (6.1.7) demands call-by-value and the non-strict abstraction in (6.1.6) call-by-name. This is why the function Strict can not be eliminated as R3.6 indicates. Hence, we redefine this rule to eliminate the use of Strict only when there is a non-strict function demanding call-by-name.

Strict(e) => e [R3.6] when e:TEM and there is no e_2 such that Non-Strict(e_2):TEM

In LC, R3.6 does not apply because there is a non-strict expression in (6.1.6). This method implies a switch in the form of the transformation process, which depends on the existence of call-by-name expressions:

1) No call-by-name expressions: (There is no Non-Strict(e):TEM). In this case, the function <u>Strict</u> can be eliminated, the transformation process is switched to a state in which every e:TEM is strict and no analysis of name-value expressions is made. This is the case in all previous example

- 135 -

languages where all occurrences of <u>Strict</u> defining functions in TEM were eliminated.

A sing for the part of the being of the transmister of the bengerain . If the

2) There are call-by-name expressions: (Non-Strict(e):TEM exists). If Strict(e):TEM exists, then in this context <u>Strict</u> imposes in effect a callby-value definition. In which case we can not eliminate <u>Strict</u> because it is a carrier of information for later analysis. Hence the transformation process is switched to the opposite state, in which unless otherwise indicated, every e:TEM is non-strict. This is the case in the current example language; <u>Strict</u> will remain in context, marking the 'value' abstraction (6.1.7).

At the moment of the call there is no indication whatsoever of the sort of argument required. We have to record this before the semantic analysis begins. The following transformation will mark such an argument:

In other words, R3.8 is applied to those expressions occurring as arguments of a template and if, somewhere in the specification, there is a non-strict function which is a member of TEM. In LC, R3.8 applies in (6.1.5). The function Thunk is defined by:

Thunk : [Exp>THU] (D14) Where THU is a domain of 'interest'. For example: Thunk(e)A:THU is true,

regardless of the functionality of e.

let E(node, n) be switchen da Calculus(Direct).	Splitting Continue	tiona
{ case [i]:	by R1.1 R3 1	(6.0.1)
D([i]); ondered	-,,,	(0.2.1)
P([1]), endcase	by DI 1 DO	1
and the second	by RI.1, R3.2	(6.2.2)
case [n]:		
N([n]); endcase	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	by R1.1, R3.2	(6.2.3)
case [e,oe]:		
{ let $w = E([e_1], p)$; let $w' = E([e_2], p)$; 0 by R1.1, R1.7, R3.2/3	([o], w, w') }; end	dcase
,,	cimes, R3.3, R3.4	(6.2.4)
case [e ₁ e ₂]:		
1 let $w = E([e_1], p); w?F \neq \{ \text{ let } w' = Thunk(F) \}$		
by R1.1. R3.2/3 times	(12, P)); W F(W')	},Err }
, 19,2/5 times,	, R3.3/twice, R3.8	(6.2.5)
case [Lam i.e ₁]: $\lambda w.E([e,], P([w/[i]]))$; ordered		
by http://withing.	R1.1, R3.2/twice	(6 2 6)
case [Lam Val i.e.]:		(0.2.0)
build(xw.E([e ₁], p([w/[i]]))); endcase by R	1.1, R3.2/3 times	(6, 2, 7)

This also requires a redefinition of DOM:

DOM(Thunk(e))	-	DOM(e)	
			[D15]

So that later in the analysis, transformations not concerned with THU can find the appropriate domain.

Before the Destination Analysis the transformation process looks like Snapshot 6.2. This analysis has isolated the three main areas of concern. At the moment of application (6.2.5), the function <u>Thunk</u> marks the argument as 'needs-thunk'. The 'name' abstraction (6.2.6) has no special markers and the function <u>Strict</u> marks the 'value' abstraction (6.2.7) as 'needs-coercion'.

6.1.2 Destination Analysis

Sna

}

nshat 6

Firstly, some redefinition of earlier rules: Recall R5.3 and R5.4, defined in section 3.4.1. We have to extend their conditions to accept the new thunk constructions: $e(P) \Rightarrow e(P).dest.(reg) In COD$ [R5.3] when (e(P):REG or e(P):THU) and not e:ENV

{ let i=e(P); C } => { e(P).dest.(i) In COD; C } [R5.4] when (e(P):REG or e(P):THU) and not e:ENV, rename $i=>(i=a_k)>reg+k$, reg

In a similar way, R5.8 and R5.10, both defined in section 4.2.1, now require a condition also accepting thunks:

e => [first.reg/reg]e [R5.8]
when e=ti and (e:TEM or e:THU)
when e:TEM or e:THU e => trans.load(DOM(e), e) In REG [R5.10]

Secondly, the strict marker is signalling that a 'name' argument is supplied to a 'value' abstraction. This means that functions marked with <u>Strict</u> have to be interpreted as requiring a coercion of the argument to call-by-value, hence its argument (the thunk) must be executed immediately on entry and its destination, as for any other form of call, is always <u>first.reg</u>.

where $e = \lambda i \cdot e_1$ $| | Strict(\lambda i \cdot | | { trans.call(i).dest.(first.reg) } [R5.20]$ when e:TEM and there is an e_2 such that Non-Strict(e_2):TEM

6.1.3 Continuation Analysis

Thunks are analysed in a similar way to abstractions. The difference lies in the names (and therefore the effect) of the procedures to plant code for entry and exit:

The marker <u>Strict</u> as left by R5.20 needs further processing. The look up process expects always a 'name' value, hence it is not sufficient to coerce 'name' arguments. In the case of a strict abstraction, we have to make again a thunk of the 'value' argument. This inefficiency can be avoided by letting the look up process check for the particular type of value, but we are interested in comparing (in section 6.3) this direct case with the continuation case. Hence we define:

```
Strict(C) \Rightarrow \{C_1; C_3; C_4\} 
[R6.20]

when C:TEM and C = { C_1; C_2 }

C_1 = trans.call(P).dest.(first.reg)

C_2 = any

where
\overline{1 \ \{ \text{ let ntry.code = forward(DOM(first.reg))} \\
i \ \text{ let exit.code = forward(COD)} \\
i \ \text{ let skip.code = forward(COD)} \\
i \ \text{ trans.jump.to(skip.code)} \\
C_3 = \langle \text{ trans.thunk.entry(ntry.code, node)} \\
i \ \text{ trans.load(DOM(first.reg), first.reg).dest.(first.reg)} \\
i \ \text{ fix.here(skip.code)} \\
C_4 = \{ \text{ntry.code/first.reg} \} C_2
```

Note that in this and the next rule, we use the special substitution rule { / }, which was defined in section 4.2.4.

6.1.4 Optimising Transformations

This analysis, is necessary regardless of the implementation choice given for <u>first.reg</u> and <u>first.par</u>. We need to ensure that the allocations of destinations within thunks, have the same extent as the thunk.

	{ C ₀
{ C ₀	$\{$ let ntry.code = E ₀
{ $\begin{cases} 0 \text{ let ntry.code} = E_0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	let exit.code = E_1^0
let exit.code = E_1	let skip.code = E_2^1
let skip.code = E_2^1	{ let old.env = this.env
trans.jump.to(P ₁) ²	<pre>let dmp.loc = trans.dump(i)</pre>
trans.thunk.entry(P_2) =>	trans.jump.to(P,) [R9.6]
C, 2	trans.thunk.entry(P ₂)
trans.thunk.exit(P ₂)	$\{dmp.loc/i\}C,$
C, 3	trans.thunk.exit(P2)
} 2	$\{dmp.loc/i\}C_{2}$
}	reset(old.env)
when i:REG	instructs outer and is india-
and i is free in C,	}
1	and the second of the second o

Snapshot 6.3: The Lambda Calculus(Direct). BCPL let trans.E(node).dest.(reg) be switchon type node into by R5.1, R7.5, RA.1 (6.3.1){ case T..Ident: look.up(node).dest.(reg); endcase by R5.3, R7.4, RA.1/twice (6.3.2) case T...Numeral: by R5.3, RA.1/twice, RA.2 (6.3.3) trans.N(node).dest.(reg); endcase case T..Plus: case T..Minus: case T..Mult: case T..Div: case T..And: case T..Or: case T..GreaterThan: case T..LessThan: case T..Equal: case T..LessOrEqual: case T..GreaterOrEqual: case T..NotEqual: trans.E(pl^node).dest.(reg) test weight^p2^node=max.reg then { let old.env = this.env let dmp.loc = trans.dump(reg) trans.E(p2^node).dest.(reg) trans.0(type^node, dmp.loc, reg).dest.(reg) reset(old.env) { let nxt = next(reg) or trans.E(p2^node).dest.(nxt) trans.0(type^node, reg, nxt).dest.(reg) }; endcase by R5.3, R5.4/twice, R5.6, R7.6/twice, R9.1, RA.1/7 times, RA.2/5 times

(6.3.4)

case N2 Application: Snapshot 6.3 (continued)
trans.E(pl^node) doct (max)
{ let econd.code = forward(p con)
let fcond.code = forward(DcoD)
trans.skip.if.in(rec. D. D)
trans. jump. to (foord and
test regement roc
then { let old one - the
let dmp log = trace l
{ let ptry dery
let evit code (DW)
let skip code = forward($DCOD$)
trans. jump. to (abd
trans.thunk ontra (atom i true.jump)
trans. $E(n^2)$ node) doot (6)
trans.thunk.evit(onit)
fix.here(skip.code)
trans.load(D W at a to
}
trans.call(dmp.loc.rea) data (c.
reset(old.env)
}
or { let $nxt = next(reg)$
$\{ \text{let ntry.domW} = \text{forward}(D, W) \}$
let exit.code = forward(D. cop)
let skip.code = forward(p .cop)
trans.jump.to(skip.code true imm.)
trans.thunk.entry(ntry.domWnode)
trans.E(p2^node).dest (first max)
trans.thunk.exit(exit.coded)
fix.here(skip.code)
trans.load(D. W. ntry.domW) doct (
}
trans.call(reg, nxt).dest.(first real)
}
trans.jump.to(econd.code, true.jump)
fix.here(fcond.code)
trans.load(DW, Err).dest.(reg)
fix.here(econd.code)
}; endcase
by R5.3/twice, R5.4/twice, R5.7, R5.8, R5.10 P5.11 P6.0 P5.1
R6.19, R7.6/twice, R8.2/3 times, R9.1, RA.1/4 times, RA.2/15 times

14.2.07

in the second

(6.3.5)

```
Snapshot 6.3 (continued)
case N2.. Abstraction:
 { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domF, node)
   { let old.env = this.env
    declare(domain.of(first.par), first.par, pl^node)
     trans.E(p2^node).dest.(first.reg)
    reset(old.env)
   trans.exit(exit.code, node)
   fix.here(skip.code)
   trans.load(D..F, ntry.domF).dest.(reg)
 }; endcase
 by R5.3/twice, R5.8, R5.9, R5.10, R6.4, R7.1, R7.2, R8.2, RA.1/3 times
                                                       (6.3.6)
 RA.2/5 times
case N2..ValAbstraction:
 { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domF, node)
   trans.call(first.par).dest.(first.reg)
   {0 let ntry.domWl = forward(D..W)
     let exit.codel = forward(D..COD)
     let skip.codel = forward(D..COD)
      { let old.env = this.env
       let dmp.loc = trans.dump(first.reg)
       trans.jump.to(skip.codel, true.jump)
       trans.thunk.entry(ntry.domWl, node)
       trans.load(domain.of(dmp.loc), dmp.loc).dest.(first.reg)
       trans.thunk.exit(exit.codel, node)
       fix.here(skip.codel)
       declare(domain.of(ntry.domWl), ntry.domWl, pl^node)
       trans.E(p2^node).dest.(first.reg)
       reset(old.env)
   10
   trans.exit(exit.code, node)
   fix.here(skip.code)
   trans.load(D..F, ntry.domF).dest.(reg)
 }; endcase
 by R5.3/twice, R5.8, R5.9, R5.10, R5.20, R6.4, R6.20, R7.1, R7.2
                                                       (6.3.7)
 R8.2/twice, R9.2, R9.6, RA.1/3 times, RA.2/8 times
```

Syntactic Categories	specification
i:Ide.	
n:Num.	Identifiers
e:Exp.	numerals
o:Opr.	lambda-expressions
A STATE OF A	operators
Syntax	
e:=ilnleoe loo line	
o ::= + 1 - 1 * 1 + 2 + 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 +	am Val i.e
	· <= >= [*] #
Semantic Domains	
T.	
N	truth values
	integers
$\mathbf{W} \cdot \mathbf{W} - [\mathbf{W} \times \mathbf{A}]$	answers
$W \cdot W = [K \neq A]$	expression closures
$K: K = [E \neq A].$	expression continuation
$e: E = [N + T + F + {Err}].$	expression values
$F = [W \rightarrow W]$.	function values
$p:U=[Ide \rightarrow W].$	environmente
 open (1.8) (1.1) open (1.1) 	environments
Semantic Domains of 'Interest'	
ENV=U.	opui nonesta
REG=E.	environments
TEM=F.	registered values
THU=W.	templates
	thunks
Semantic Primitives (undefined)	
$N:[Num \ge N]$	
$0:[Opr \rightarrow E \rightarrow E \rightarrow W]$	
and langue data and an and the stores the	
Semantic Equations	
$E:[Exp \rightarrow H \rightarrow H]$	
- Crub > o > w].	(6.4.1)
R[i]nk=	(******)
p[i]k	
p[I]K.	(6.4.2)
Finlaka	(00402)
r(n) = r(n)	
	(6 / 3)
of builds and man	(0.4.5)
$E[e_1 o e_2]pk =$	
$E[e_1]p(\lambda e \cdot E[e_2]p(\lambda e' \cdot O[o]ee'k)).$	16 1 1
Deal arrent	(0.4.4)
$[e_1e_2]pk=$	
$E[e_1]p(\lambda e \cdot e?F \rightarrow (\lambda w' \cdot (e F)w'k)(\lambda k \cdot E[e_1]pk).$	kErr).
- 2.1,	(6.4.5)
[Lam i.e,]pk=	
$k(wk' \cdot E[e_1](p[w/[i]])k').$	
1	(6.4.6)
[Lam Val i.e.]pk=	
$k(\lambda wk' \cdot w(\lambda e \cdot E[e_1](p[\lambda k \cdot ke/[i]])k'))$	
	(6, 4, 7)

- 143 -

6.2 Continuation Semantics

Let us turn our attention, to another version of a DS specification for the same language. It is the continuation semantics, as described in Snapshot 6.4.

Recall that in the previous section, we had to mark 'name' arguments (R3.8). This was done by reference to the existence of a non-strict(e) in TEM. In this version of the LC, the domain W of expression closures, already indicates where thunks are, this is why among the domains of 'interest', we have defined THU=W. In Snapshot 6.5 we show the state of the transformation process before the Destination Analysis so that it can be compared with Snapshot 6.2. In particular, note the definition of w' in (6.2.5) and (6.5.5), the request for a thunk in the argument for a call is indicated in the former by Thunk (as a result of R3.8). In the latter, the thunk is indicated by the abstraction)k.e which is in THU (this abstraction has been carried over from the original specification), so both expressions are in THU and are converted in a similar way to thunks, respectively by R6.19 and R6.21 (to be defined below). Also, note in (6.2.7) and (6.5.7) how 'value' abstractions are, at this point, quite different: In the former, Strict marks such abstraction to allow R5.20 and R6.20 to transform accordingly. In the latter, the argument w is involved in an application (to find the value associated with the 'name' argument); this will be transformed by R5.21 and the value in the declaration of [i] is again remade into a 'name' argument, namely: \k.{ e; k }. and transformed by R6.21 (both these rules are defined below).

Snapshot 6.5: The Lambda Calculus(Continuation). Splitting Continuations let E(node, p).cont.(k).dest.(?) be switchon type node into by R1.1, R3.1, R4.3 (6.5.1){ case [i]: p([i]).cont.(k).dest.(?); endcase by R1.1, R3.2, R4.4 (6.5.2)case [n]: N([n]); k; endcase by R1.1, R3.2/twice, R4.1 (6.5.3)case [e10e2]: E([e1], p).cont.(E([e₂], p).cont.(O([o], e, e').cont.(k).dest.(?)).dest.(e')).dest.(e); endcase by R1.1, R3.2/3 times, R4.2/twice, R4.4 (6.5.4) case [e1e2]: E([e,],²p).cont.(e?F> { let w' = \k.E([e₂], p).cont.(k).dest.(?) e|F(w').cont.(k).dest.(?) },Err; k).dest.(e); endcase by R1.1, R3.2/4 times, R3.3, R4.1, R4.2, R4.4/twice (6.5.5) case [Lam i.e,]: kw.kk'.E([e¹], p([w/[i]])).cont.(k').dest.(?); k; endcase by R1.1, R1.2, R3.2/3 times, R4.1, R4.4 (6.5.6) case [Lam Val i.e.]: k'.w().cont.(E([e₁], p([k.{ e; k }/[i]])).cont.(k').dest.(?)).dest.(e) k; endcase by R1.1, R1.2, R3.2/5 times, R4.1/twice, R4.2, R4.4 (6.5.7)

6.2.1 Destination Analysis

With the new domain of 'interest' THU, we can still apply R5.4, R5.8 and R5.10, but we need a new rule for explicit calls of thunks which should be compared with R5.20.

 $e().cont.(e_1).dest.(i) | => | {trans.call(e).dest.(first.reg)} | mean e:THU [first.reg/i]e_1 [R5.21]$

6.2.2 Continuation Analysis

The conversion for thunks, can not be the same as that one used in the direct semantics. The case that we are now considering, involves a lambda abstraction for the return continuation:

when li.e, : THU

And we redefine R6.12 to cope also with thunks:

 $e(P_0, e_0([e_1/e_2], P_1)A | => | e(P_0, e_0([ntry.code/e_2], P_1)A [R6.12] | where except for the last statement when <math>e_1$:TEM or e_1 :THU _____ | e_3 is the same as R6.11 or R6.21

6.3 Comparison

J. Reynolds [Rey74] and J. Stoy [Sto76] have shown the congruence of direct continuation semantic descriptions by setting up predicates using the and framework of [MaS76]. Since direct and continuation semantics can be proven congruent, it seems then natural to compare the corresponding generated code generation processes. However, as indicated in Chapter 1, we are not concerned with formal proofs of correctness. Not because such proofs are devoted our research to develop a because uninteresting, but WP transformation system able to generate efficient and usable code generators. We hope that once this has been achieved, future generations will continue the work and hopefully prove it correct. However, a glance comparing both final versions shown in Snapshot 6.3 and Snapshot 6.6 (below) is sufficient to give us confidence in the correctness of our transformations. Moreover, lacking correctness proofs, a further and more interesting comparison can be made, i.e: the code generated by each one.

When running both CGP over input programs like the following:

comment:	True		= Lam x. Lam x	7 17
comment:	False		= Lam v. Lam y	• .
comment:	Let i	=e In e'	= (Lam i.c	·)(a)
comment:	Let Val i	=e In e'	= (Lam Val i.e	(e)

Let Val Y = Lam f.(Lam x.f(xx))(Lam x.f(xx)) In Let Val Fact = Y(Lam f.Lam Val n.(n=0) 1 (n*f(n-1))) In Let Val Cons = Lam Val x.Lam Val y.Lam Val z.(z=1)xy In Let Val Car = Lam Val x.x 1 In Let Val Cdr = Lam Val x.x 2 In Let Val Apply = Y(Lam f.Lam Val g.Lam n.(n=0) 0 (Cons (g n) (f(g)(n-1)))) In Car(Cdr(Apply Fact 7))

we found that the code generated by both is without exception precisely the same. This result can be expressed thus:

DIRECT> CGP-d>	++
congruent specifications	same DEC-10
CONTINUATION> CGP-c>	

An excellent result which, unfortunately, does not prove that the transformation process is correct, but that it is consistent, at least for the examples we tried. It might be the case of both CGPs generate the same 'wrong' code. That this is not so, was checked again empirically, by running the code that they produce, verifying that correct answers were produced.

However, it appears that the treatment of forward references, or Continuation Analysis is correct. The CGP derived from the continuation semantics consists of a procedure which keeps always a forward reference to the next expression to translate, where as the CGP associated with the direct semantics consists of a procedure with no 'context' information. This information is only used to plant jump instructions to follow the flow of control. The flow of control of the CGP generated from the direct semantics, depends heavily on the form of the concrete semantics, and hence by the particular order imposed by the transformation process. The form of the expression continuations dictates the flow of control in the continuation CGP. The fact that both orders coincide, derives only from our design decision of imposing a left to right order. If the specifications are rewritten with an unspecified order of evaluation, for example, using a list evaluation operator like <u>le</u> of [Sto77] pp-265, then the flow of control could differ if different assumptions regarding <u>le</u> were chosen.

With respect to efficiency, again there is a penalty paid by the form of the semantic specifications. Consider the treatment of the environment, In the continuation case, denoted values are in $[K \ge A]$, the domain of expression closures. And this domain is the one associated with thunks. So in this case, the CGP was directed to make thunks, before declaring the parameter of a 'value' abstraction. In the direct specification, declarations are not forced to be thunks, we could avoid R6.20 and let <u>look.up</u> decide what kind of object has been declared. We implemented such a version and indeed the direct CGP that resulted was more efficient, because thunks are not created while declaring the argument of 'name' abstractions. However, R6.20 allows the transformation process to produce two CGPs, different in their form but equivalent in their translation. This is what we set out to achieve.

```
Snapshot 6.6: The Lambda Calculus(Continuation). BCPL
let trans.E(node).cont.(continue, jump).dest.(reg) be
switchon type node into
                           by R5.12, R6.10, R7.5, R8.1, RA.1
                                                                     (6.6.1)
{ case T..Ident:
   look.up(node).cont.(continue, jump).dest.(reg); endcase
                          by R5.13, R6.10, R7.4, R8.1, RA.1/twice
                                                                     (6.6.2)
 case T .. Numeral:
   trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase
                     by R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2
                                                                     (6.6.3)
 case T..Plus: case T..Minus: case T..Mult: case T..Div: case T..And:
 case T..Or: case T..GreaterThan: case T..LessThan: case T..Equal:
 case T..LessOrEqual: case T..GreaterOrEqual: case T..NotEqual:
   {0 let continue2 = forward(D..COD)
      trans.E(pl^node).cont.(continue2, false.jump).dest.(reg)
      fix.here(continue2)
      { let continuel = forward(D..COD)
        test weight p2 node=max.reg
        then { let old.env = this.env
              let dmp.loc = trans.dump(reg)
               trans.E(p2<sup>node</sup>).cont.(continuel, false.jump).dest.(reg)
              fix.here(continuel)
              trans.O(type^node, dmp.loc, reg).cont.(continue, jump
                       ).dest.(reg)
              reset(old.env)
    La man }
     or { let nxt = next(reg)
       trans.E(p2<sup>node</sup>).cont.(continuel, false.jump).dest.(nxt)
            fix.here(continue1)
              trans.O(type^node, reg, nxt).cont.(continue, jump
                      ).dest.(reg)
     Tuttel . Day
  }0; endcase
  by R5.13, R5.14/twice, R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/twice
  R9.1, RA.1/7 times, RA.2/7 times
                                                                    (6.6.4)
```

```
Snapshot 6.6 (continued)
case N2.. Application:
  {0 let continuel = forward(D..COD)
    trans.E(pl^node).cont.(continuel, false.jump).dest.(reg)
    fix.here(continuel)
    { let fcond.code = forward(D..COD)
      trans.skip.if.in(reg, D..F)
      trans.jump.to(fcond.code, true.jump)
      test reg=max.reg
                           A. MART ( gowlessey ) NEW MELENING
      then { let old.env = this.env
             let dmp.loc = trans.dump(reg)
            { let ntry.domW = forward(D..W)
              let exit.code = forward(D..COD)
              let skip.code = forward(D..COD)
              trans.jump.to(skip.code, true.jump)
             trans.thunk.entry(ntry.domW, node)
               trans.E(p2^node).cont.(exit.code, false.jump
                      ).dest.(first.reg)
               trans.thunk.exit(exit.code, node)
               fix.here(skip.code)
               trans.load(D..W, ntry.domW).dest.(reg)
             trans.call(dmp.loc, reg).cont.(continue, true.jump
                       ).dest.(first.reg)
             reset(old.env)
           { let nxt = next(reg)
      or
             { let ntry.domW = forward(D..W)
               let exit.code = forward(D..COD)
               let skip.code = forward(D..COD)
               trans.jump.to(skip.code, true.jump)
               trans.thunk.entry(ntry.domW, node)
               trans.E(p2^node).cont.(exit.code, false.jump
                      ).dest.(first.reg)
               trans.thunk.exit(exit.code, node)
               fix.here(skip.code)
               trans.load(D..W, ntry.domW).dest.(nxt)
             trans.call(reg, nxt).cont.(continue, true.jump
                       ).dest.(first.reg)
           }
      fix.here(fcond.code)
      trans.load(D..E, Err).dest.(reg)
      trans.jump.to(continue, jump)
 }0; endcase
 by R5.3, R5.4, R5.7, R5.8, R5.10, R5.13, R5.14, R5.15, R6.1, R6.2, R6.6
  R6.7, R6.9, R6.10/twice, R6.21, R7.6/twice, R8.1/twice, R8.2/4 times
                                                              (6.6.5)
 R9.1, RA.1/4 times, RA.2/15 times
```

```
Snapshot 6.6 (continued)
 case N2.. Abstraction:
   { let ntry.domF = forward(D..F)
     let exit.code = forward(D..COD)
    let skip.code = forward(D..COD)
    trans.jump.to(skip.code, true.jump)
    trans.entry(ntry.domF, node)
     { let old.env = this.env
      declare(domain.of(first.par), first.par, pl^node)
      trans.E(p2^node).cont.(exit.code, false.jump).dest.(first.reg)
      reset(old.env)
    }
    trans.exit(exit.code, node)
    fix.here(skip.code)
    trans.load(D..F, ntry.domF).dest.(reg)
  trans.jump.to(continue, jump); endcase
  by R5.3, R5.8, R5.9, R5.10, R5.13, R6.1, R6.10, R6.11, R7.1, R7.2, R8.1
  R8.2/twice, RA.1/3 times, RA.2/5 times
                                                                    (6.6.6)
case N2...ValAbstraction:
  { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domF, node)
   trans.call(first.par).dest.(first.reg)
   {0 let ntry.domW1 = forward(D..W)
      let exit.code1 = forward(D..COD)
      let skip.code1 = forward(D..COD)
      { let old.env = this.env
        let dmp.loc = trans.dump(first.reg)
        trans.jump.to(skip.codel, true.jump)
        trans.thunk.entry(ntry.domW1, node)
        trans.load(domain.of(dmp.loc), dmp.loc).dest.(first.reg)
        trans.thunk.exit(exit.codel, node)
        fix.here(skip.codel)
        declare(D..W, ntry.domWl, pl^node)
        trans.E(p2^node).cont.(exit.code, false.jump).dest.(first.reg)
        reset(old.env)
   }0
   trans.exit(exit.code, node)
  fix.here(skip.code)
  trans.load(D..F, ntry.domF).dest.(reg)
ł
trans.jump.to(continue, jump); endcase
by R5.3/twice, R5.7, R5.8, R5.9, R5.10, R5.13, R5.14, R5.21, R6.1/twice
R6.10, R6.11, R6.12, R6.21, R7.1, R7.2, R8.1, R8.2/4 times, R8.3, R9.2
R9.6, RA.1/3 times, RA.2/9 times
```

(6.6.7)

- 151 -

CHAPTER 7

From Standard to Implementation DS

Our conjecture concerning the relationship between compilers and semantic equations is that not only the semantic equations can dictate the structure of a compiler, but conversely, intuitions and experience of compiler writers could influence the DS equations themselves.

However, we do appreciate the need to have a 'standard' denotational semantics without any bias towards implementation ideas. So we propose to distinguish between two different forms of DS which, for any particular language, we shall have to prove congruent, namely:

Standard Denotational Semantics (SDS):

A canonical definition free of bias towards any particular implementation.

Implementation Denotational Semantics (IDS): Embodying all implementation strategies desired.

In this chapter, we will show how four implementation issues can be encapsulated at this level, namely:

1 Efficiency in boolean expressions.

2 Efficiency in arithmetic expressions.

3 The allocation of locations.

4 Declaration and invocation records.

Snapshot 7.1: Boolean Expressions(SDS)	• Original Specification
b:Boy	<u> </u>
j. Ida	boolean expressions
1:1de.	identifiers
8 t	and a second
Syntax	
$b ::= i b_1/(b_2 b_1/(b_2 b_1 - b_2, b_3))$	
Semantics Domains	
$s:S=[Ide \ge T]$.	
$c:C=[S \rightarrow S]$.	states
$k: K = [T \rightarrow C]$	command continuations
t:T=[{ TRUE } + { FALSE }].	expression continuations
Semantic Domains of 'Interest'	villes
REG=T.	
STA=S.	registered values
Comontia Francis	States
Beller N R R R	
$\mathbf{D}:[\mathbf{Bex} \neq \mathbf{K} \neq \mathbf{C}].$	(7, 1, 1)
p[+]1	(/•1•1)
B[1]K=	
ks.k(s[i])s.	(7 1 2)
	(7.1.2)
$B[b_1/b_2]k=$	
$B[b_1]{\lambda t \cdot t \rightarrow B[b_2]k, kFALSE}.$	(7.1.2)
	(7.1.3)
$B[b_1 \setminus b_2]k =$	
$B[b_1]{\lambda t \cdot t \rightarrow kTRUE, B[b_1]k}$.	
1 22.2	(7.1.4)
$B[b_1 \rightarrow b_2, b_2]k =$	
$B[b_1]{t,t}$	
1	(7.1.5)

7.1 Boolean Expressions

Consider the SDS specification of boolean expressions of Snapshot 7.1. Boolean expressions viewed in this way are like any other expression with the exception that they evaluate to boolean values. So for example, the expression:

a/b/((c/d/e/f)/(g/h))

compiled with the corresponding CGP shown in Snapshot 7.2 will generate the DEC-10 code shown below that snapshot. But it happens that boolean expressions can be evaluated in a completely different way. Their evaluation

5.93

let t	rans.B(no	de).cont.	(contin	nue, jump).dest.()	reg) be		17 .	
switch	hon type	node into	P			and the second		(7.2	•1)
{ case	e TIder	nt:			and a street			Rector in	
t	rans.load	l(DIde,	node).d	lest.(reg	g); trans	.jump.to	(continue,	jump)	
e	ndcase							(7.2	• 2,
	e N2 And						-11. 1. 1.		
Las	0 let cor	tinue1 =	forward	(D., COD)	No.				
1	trane.	R(n1^node)	.cont.(continue	1. false	. jump).d	est.(reg)		
	fix.her	e(continu	el)	Concinac		. J F /			
	{ let f	cond.code	= forv	ard(D	COD)				
	trans	.jump.if.	false(1	reg, fcor	id.code)				
	trans	B.B(p2^nod	e).cont	t.(contin	nue, true	.jump).d	est.(reg)		
	fix.h	nere(fcond	.code)						
	trans	.load(D	T, FALS	SE).dest.	(reg)				
	trans	.jump.to(continu	ie, jump)				A State I	11.65
}	0; endcas	se						(7.	2.3
5									
cas	e N20r:		-						
{	0 let cor	tinuel =	forward	d(DCOD)					
	trans.H	B(pl^node)	.cont.	(continue	el, false	.jump).d	est.(reg)		
	fix.her	ce(continu	uel)						
	{ let f	cond.code	= for	ward(D	COD)				
	trans	s.jump.if.	false(1	reg, fcor	nd.code)				
	trans	s.load(D.	T, TRUI	E).dest.((reg)				
	trans	s.jump.to(contin	ue, true.	Jump)				
	fix.t	nere(fcond	.code)) doct (rog)		
	trans	s.B(p2 nod	le).com	c.(contin	iue, jump).uest.(reg)	(7.	2.4
}	0; endcas	se						10.34	
cas	e N3. Cor	ditional:							
{	0 let con	tinuel =	forward	d(DCOD))				
	trans.H	B(pl^node)	.cont.	(continue	el, false	.jump).d	est.(reg)		
	fix.her	re(continu	uel)	11					
	{ let i	fcond.code	= for	ward(D	COD)				
	trans	s.jump.if.	false(reg, fcom	nd.code)				
	trans	B.B(p2^nod	le).con	t.(contin	nue, true	.jump).d	lest.(reg)	2.1.30	
	fix.h	nere(fcond	l.code)			100	and the second s		
	trans	B.B(p3^nod	le).con	t.(contin	nue, jump).dest.(reg)	bianei3	
}	0; endcas	se						(7.	2.5
}		Constant of the		in abit	al boun	10 allas	MONE	101 -	
	MOVE	AC1,a	1L3:	SETZ	AC1,0	1	MOVE	ACI,g	
	JUMPE	AC1,L1	L4:	JUMPE	AC1,L5	13 14 17	JUMPE	ACI,LO	
	MOUE	AC1,b	1	SETO	AC1,0	1	SETO	ACI,U	
	MOVE		1	JRST	0,L7	1	JKST	ACL h	
	JRST	0,L2			101	1 1 1 1 1			
L1:	JRST SETZ	0,L2 AC1,0	115:	MOVE	AC1,e	178:	MOVE	ACI,II	
L1: L2:	JRST SETZ JUMPE	0,L2 AC1,0 AC1,L10	L5:	MOVE JUMPE	AC1,e AC1,L6	118:	JRST	0,L11	
L1: L2:	MOVE JRST SETZ JUMPE MOVE	0,L2 AC1,0 AC1,L10 AC1,c	L5: 	MOVE JUMPE MOVE	AC1,e AC1,L6 AC1,f	L8: L9:	JRST SETZ	0,L11 AC1,0	
L1: L2:	JRST SETZ JUMPE MOVE JUMPE	0,L2 AC1,0 AC1,L10 AC1,c AC1,L3	L5: 	MOVE JUMPE MOVE JRST	AC1,e AC1,L6 AC1,f 0,L7	L8: L9: 	JRST SETZ JRST	AC1,0 0,L11 AC1,0 0,L11	
L1: L2:	MOVE JRST SETZ JUMPE MOVE JUMPE MOVE	0,L2 AC1,0 AC1,L10 AC1,c AC1,L3 AC1,d	L5: L6:	MOVE JUMPE MOVE JRST SETZ	AC1,e AC1,L6 AC1,f 0,L7 AC1,0	L8: L9: L10:	MOVE JRST SETZ JRST SETZ	AC1,0 0,L11 AC1,0 0,L11 AC1,0	

contrations than offer or string statement a fit becomings to main such as and

need not produce a value but can select the next path of the computations. This is exactly how <u>Cond</u> can be thought to behave: given two expressions, it picks one on the basis of a given boolean value.

To model this behaviour, we redefine the function **B**, as a semantic valuator taking two continuations, one to be applied if the supplied boolean expression evaluates to true, and another if it evaluates to false.

Snapshot 7.3: Boolean 1	Expressions(IDS), Original Specific	tion
Semantic Equations	i oliginal specifica	ition
$B: [Bex \rightarrow C \rightarrow C \rightarrow C].$		(7.3.1)
B[i]cc'=		
ks.s[i]≯cs,c's.		(7.3.2)
$B[b_{\prime}] = $		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$B[b_1]{B[b_2]cc'}c'$.		(7.3.3)
B[b,]/b,]cc' =		
$B[b_1]c{B[b_2]cc'}$.		(7.3.4)
$B[b_1 - b_2, b_2]cc' =$		
$B[b_1]{B[b_2]cc'}{B[b_3]cc'}.$		(7.3.5)

This model of boolean expressions with two continuations as described in Snapshot 7.3, corresponds precisely to a way that efficient compilers implement them, namely as true and false chains. A simple extension to the Continuation Analysis to cope with pairs of continuations will produce the efficient CGP for boolean expressions as described in Snapshot 7.4 with the corresponding 'ideal' code for the same expression shown below it.

Note that not only the number of generated instructions has been reduced (from 29 to 16), due to the absence of register assignments (SETZ and SETO) and jumps (JRST), but also the length of the CGP is shorter because in

- 155 -

```
Snapshot 7.4: Boolean Expressions(IDS). BCPL
let trans.B(node).cont.(continue, continuel, jump) be
switchon type node into
                                                                     (7.4.1)
{ case T..Ident:
    trans.load(D..Ide, node).dest.(first.reg)
    test jump
    then { trans.jump.if.true(first.reg, continue)
           trans.jump.to(continuel, not jump)
        trans.jump.if.false(first.reg, continuel); endcase (7.4.2)
    or
  case N2.. And:
    { let continue2 = forward(D..COD)
     trans.B(pl^node).cont.(continue2, continue1, false.jump)
      fix.here(continue2)
      trans.B(p2^node).cont.(continue, continuel, jump)
                                                                     (7.4.3)
    }; endcase
  case N2..Or:
    { let continue2 = forward(D..COD)
      trans.B(pl^node).cont.(continue, continue2, true.jump)
      fix.here(continue2)
      trans.B(p2^node).cont.(continue, continuel, jump)
    }; endcase
                                                                  (7.4.4)
  case N3..Conditional:
    { let continue2 = forward(D..COD)
     let continue3 = forward(D..COD)
      trans.B(pl^node).cont.(continue2, continue3, false.jump)
      fix.here(continue2)
      trans.B(p2^node).cont.(continue, continuel, false.jump)
      trans.jump.to(continue, true.jump)
      fix.here(continue3)
      trans.B(p3^node).cont.(continue, continuel, jump)
                                                                     (7.4.5)
    }; endcase
       MOVE
               AC1,a
                                       AC1,d
                               MOVE
                                               1L2:
                                                       MOVE
                                                               AC1,g
                                       AC1,L2
       JUMPE
               AC1,L4
                               JUMPN
                                               1
                                                       JUMPN
                                                               AC1,L3
               AC1,b
       MOVE
                       [L1:
                               MOVE
                                       AC1,e
                                                       MOVE
                                                               AC1,h
       JUMPE
               AC1, L4 |
                               JUMPE
                                       AC1,L4
                                                       JUMPE
                                                               AC1,L4
                                               1
```

MOVE AC1,c | MOVE AC1,f |L3: ; here if true JUMPE AC1,L1 | JUMPE AC1,L4 |L4: ; here if false

(7.4.2) and (7.4.3) there is no need to generate those instructions (no trans.load) and in general there are less forward-fix constructions.

Snapshot 7.5: Arithmetic Ex	pressions(SDS).	Original	Specification
e:Exp.			
i:Ide.			expressions
n:Num.			identifiers
o:Opr.			numerals
- opt			operators
Syntax			
e ::= i n e,oe			
$\circ ::= + - *^{1} \frac{2}{7}$			
Somantia Densi			
n:N			
n:N			integers
s:s=[ide → N].			states
Semantic Domains of (Internet)			
REG=N.			
STA=S.			registered values
			states
Semantic Primitives (undefined)			
$N:[Num \ge N]$.			
$0:[Opr \rightarrow N \rightarrow N \rightarrow N]$			
Semantic Equations			
$\mathbf{E}: [\mathrm{Exp} \neq \mathrm{S} \neq \mathrm{N}].$			
			(7.5.1)
E[i]=			
Strict()s.s[i]).			
			(7.5.2)
E[n]=			
Strict()s.N[n]).			
			(7.5.3)
$E[e_1 o e_2] =$			
$E[e_1 f + \lambda n \cdot (E[e_n] + \lambda n' \cdot Strict())$	s.Ololnn())		
1 - 2 - 4 - 5000000000	sololun)).		(7.5.4)

7.2 Arithmetic Expressions

To substantiate the claim of producing an efficient compiler, we must ensure that expressions are compiled into efficient code. For example, consider the SDS specification of arithmetic expressions of Snapshot 7.5, with associated CGP as shown in Snapshot 7.6 and example of code generation in the left hand column below it. To generate the 'ideal' code of the right hand side, a better algorithm can easily be implemented; we will follow the one given in [Bor79]. The modified parts of the semantic specification are shown in Snapshot 7.7 where the new operators '--' and '//' are respectively the

TEL	trans.E(n	ode).dest.(reg	g) be switc	hon type node into	(7.6.1)
{ ca	ase TIde	nt:			
	trans.loa	d(DIde, node	e).dest.(re	g); endcase	(7.6.2)
1.2					
Ca	ase INum	eral:			
	trans.N(n	ode).dest.(reg	g); endcase		(7.6.3)
ca	ase TPlu	s: case TMin	nus: case T	Mult: case TDiv:	
	trans.E(p	1'node).dest.	(reg)		(1
	test weig	ht^p2^node=max	k.reg		
	then { le	t old.env = th	nis.env		
	le	t dmp.loc = tr	rans.dump(r	eg)	
	tr	ans.E(p2^node)	.dest.(reg)	
	tr	ans.O(type not	ie, dmp.loc	, reg).dest.(reg)	
	re	set(old.env)		a file of the second	
	1 1				
	(1.				
	or { le	t nxt = next()	reg)		
	or { le tr	$ans \cdot E(p2^node)$.dest.(nxt)	
	or { le tr tr	ans.E(p2 ^{node}) ans.0(type ^{nod}	reg)).dest.(nxt ie, reg, nx) t).dest.(reg)	
	or { le tr tr }; e	<pre>t nxt = next() ans.E(p2^node) ans.O(type^nod ndcase</pre>	reg)).dest.(nxt le, reg, nx) t).dest.(reg)	(7.6.4)
}	or { le tr tr }; e	t nxt = next() ans.E(p2^node) ans.O(type^nod ndcase	reg)).dest.(nxt de, reg, nx) t).dest.(reg)	(7.6.4)
}	or { le tr tr }; e MOVE	t nxt = next() ans.E(p2^node) ans.O(type^nod ndcase AC1,a	reg)).dest.(nxt de, reg, nx MOVE) t).dest.(reg) AC1,c	(7.6.4)
}	or { le tr tr }; e MOVE MOVE	t nxt = next() ans.E(p2^node) ans.O(type^nod ndcase AC1,a AC2,b	reg)).dest.(nxt de, reg, nx MOVE IMUL) t).dest.(reg) AC1,c AC1,d	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL	AC1,a AC1,AC2,b AC1,AC2	neg)).dest.(nxt de, reg, nx MOVE IMUL MOVE) t).dest.(reg) AC1,c AC1,d AC2,e	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE	AC1,a AC2,b AC2,c	neg)).dest.(nxt de, reg, nx MOVE IMUL MOVE IMUL) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE MOVE	AC1,a AC1,A AC2,b AC1,AC2 AC2,c AC3,d	neg)).dest.(nxt de, reg, nx MOVE IMUL MOVE IMUL SUB) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE MOVE IMUL	AC1,a AC2,b AC1,AC2 AC2,c AC3,d AC2,AC3	MOVE MOVE IMUL MOVE IMUL SUB MOVE) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC2,f AC1,AC2 AC2,g	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE	AC1,a AC2,b AC2,c AC2,C AC2,C AC2,C AC3,d AC2,AC3 AC3,e	MOVE MOVE IMUL MOVE IMUL SUB MOVE ADD) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE MOVE MOVE	AC1,a AC2,b AC2,c AC2,C AC2,C AC2,C AC3,d AC2,AC3 AC2,C AC2,C	MOVE MOVE IMUL MOVE IMUL SUB MOVE ADD IDIV) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC2,h AC1,AC2	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE MOVE IMUL	AC1,a AC1,a AC2,b AC1,AC2 AC2,c AC2,c AC3,d AC2,AC3 AC3,e AC3,AC4	MOVE MOVE MOVE MOVE MOVE MOVE MOVE ADD IDIV MOVE) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC2,h AC1,AC2 AC2,a	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE MOVE IMUL MOVE MOVE IMUL SUB	AC1,a AC1,a AC1,a AC2,b AC1,AC2 AC2,c AC2,C AC3,d AC2,AC3 AC3,e AC4,f AC3,AC4 AC2,AC3	MOVE MOVE MOVE MOVE MOVE MOVE MOVE ADD IDIV MOVE IMUL) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC2,h AC1,AC2 AC2,a AC2,a AC2,b	(7.6.4)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE IMUL SUB MOVE	AC1,a AC1,a AC1,a AC2,b AC1,AC2 AC2,c AC2,C AC3,d AC2,AC3 AC3,e AC4,f AC3,AC4 AC2,AC3 AC2,AC3 AC3,g	MOVE MOVE MOVE MOVE MOVE MOVE MOVE ADD IDIV MOVE IMUL xDIVr	AC1,c AC1,d AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC1,AC2 AC2,h AC1,AC2 AC2,a AC2,a AC2,b AC1,AC2 ;pseudo-op xl	(7.6.4) DIV=reverse(IDIV)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE IMUL SUB MOVE MOVE MOVE	AC1,a AC1,a AC2,b AC2,c AC2,C AC2,C AC3,d AC3,c AC4,f AC3,AC4 AC2,AC3 AC3,g AC4,h	MOVE MOVE MOVE MUL MOVE MOVE MOVE ADD IDIV MOVE IMUL xDIVr	AC1,c AC1,d AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC1,AC2 AC2,a AC2,a AC2,a AC2,b AC1,AC2 ;pseudo-op xl	(7.6.4) DIV=reverse(IDIV)
}	or { le tr tr }; e MOVE MOVE IMUL MOVE MOVE IMUL SUB MOVE MOVE ADD	AC1,a AC1,a AC1,a AC2,b AC1,AC2 AC2,c AC3,d AC3,d AC3,e AC3,AC4 AC2,AC3 AC3,AC4 AC3,AC4 AC3,AC4 AC3,AC4	MOVE MOVE IMUL MOVE IMUL SUB MOVE ADD IDIV MOVE IMUL xDIVr Code fo) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC1,AC2 AC2,a AC2,a AC2,b AC1,AC2 ;pseudo-op xl or: a*b/((c*d-e*t)	(7.6.4) DIV <u>=</u> reverse(IDIV) f)/(g+h))
}	or { le tr tr }; e MOVE MOVE IMUL MOVE IMUL MOVE IMUL SUB MOVE IMUL SUB MOVE ADD IDIV	AC1,a AC1,a AC1,a AC2,b AC1,AC2 AC2,c AC2,C AC3,d AC2,AC3 AC3,AC4 AC2,AC3 AC3,g AC3,AC4 AC3,A	neg)).dest.(nxt de, reg, nx MOVE IMUL MOVE IMUL SUB MOVE ADD IDIV MOVE IMUL xDIVr Code fo Left ha) t).dest.(reg) AC1,c AC1,d AC2,e AC2,f AC1,AC2 AC2,g AC2,h AC1,AC2 AC2,a AC2,a AC2,b AC1,AC2 ;pseudo-op xl or: a*b/((c*d-e*j and side produced by Si	(7.6.4) DIV=reverse(IDIV) f)/(g+h)) hapshot 7.6

reverse of '-' and '/'. In fact, these equations, together with the Optimising Transformations abstract the 'register-allocation' techniques of 'tree weighting' and 'dumping', as it can be seen in Snapshot 7.8 when we transform accordingly.

It is interesting to observe, in the translation of the two crucial areas of boolean and arithmetic expressions, the two different methods used in our IDS specifications to improve the kind of code that our CGPs produce, In the

Syntax	Modifications to Snapshot 7.5
○ ::= + - * / //	
Semantic Domain	
$T = [{ TRUE } + { FALSE }].$	booleans
Semantic Domains of 'Interest'	
REG=[N + T]. BOO=T.	registered values compile-time booleans
emantic Primitives (undefined)	
TReverseNeeded: [Exp \rightarrow BOO].	
Leaf: $[Exp \neq Opr \neq S \neq N \neq N]$.	
sLeaf: $[Exp \Rightarrow B00]$.	
emantic Equation	
$[e_1 \circ e_2] = \\ If Reverse Needed [e_1 \circ e_2] \neq E(Reverse [e_1 \circ e_2]] \\ (E[e_1] + \\ (E[$	Exp),
$n.IsLeaf[e_2]$ >Strict($s.RLeaf[e_2][o]sn$)	$(E[e_{2}] +$
	<pre>\n'.Strict(\s.0[o]nn')))</pre>
	(7.7.4)

former, the functionality of the main valuator **B** was redefined as a function of two command continuations (C), instead of one expression continuation (K=[T>C]), so that the associated CGP could keep track of its operational context. In the latter, the new primitive function <u>IsLeaf</u> was introduced to detect the moment when the translator 'sees' the 'leaf' of an expression, so that the appropriate operation acting on memory could be generated, instead of a load followed by an operation acting on registers. Another primitive function <u>IfReverseNeeded</u>, was introduced to reverse a node to reduce the number of registers required.

Two questions immediately arise:

- Are the SDS and IDS equivalent specifications?

- Is it possible to automatically generate the IDS from the SDS?

Snapshot 7.8: Arithmetic Expressions(IDS). BCPL

```
A Fragment
case T..Plus: case T..Minus: case T..RevMinus: case T..Mult: case T..Div:
case T..RevDiv:
  test IfReverseNeeded(node).dest.(reg)
  then trans.E(Reverse(node)).dest.(reg)
       { trans.E(pl^node).dest.(reg)
  or
          test IsLeaf(p2<sup>node</sup>).dest.(reg)
         then RLeaf(p2<sup>node</sup>, type<sup>node</sup>, reg).dest.(reg)
               test weight^p2^node=max.reg
         or
               then { let old.env = this.env
                       let dmp.loc = trans.dump(reg)
                       trans.E(p2<sup>node</sup>).dest.(reg)
                       trans.O(type^node, dmp.loc, reg).dest.(reg)
                       reset(old.env)
                    }
               or
                    { let nxt = next(reg)
                       trans.E(p2^node).dest.(nxt)
                       trans.O(type^node, reg, nxt).dest.(reg)
                     }
                                                                         (7.8.4)
       }; endcase
```

Firstly, the congruence of our IDS specifications with respect to their SDS ones have been proven congruent in [Ras80]. Secondly, we believe that the IDS specification of boolean expressions, which neatly clarifies what happens with these expressions, can be considered - within the frame of a von Neumann sequential architecture - a SDS specification. The fact that it abstracts an implementation idea does not add more light than the fact that environments and states refer to implementations. The treatment of boolean expressions as switches over the flow of control, in the context of programming languages, can be traced back to 1955 (PP-2 compiler - pp 246 in [Knu80]). However, with respect to our IDS treatment of arithmetic expressions, it it possible for the transformation process, to spot the cases where no order of evaluation is implied by a semantics of [e'oe''] and introduce tree weighting itself. This, we believe, can be done and must be done, if one wishes to start with SDS semantics.

Syntactic Categories	
c:Com.	Commande
e:Exp.	expressions
i:Ide.	identifiers
Syntax	
c ::= Let i:=e In c ₁ i:=e	
Semantic Domains	
e:E.	expression values
$c:c=[s \rightarrow s]$.	state transformation
$T = [{ TRUE } + { FALSE }].$	truth values
1:L.	locations
$p:U=[Ide \ge L]$.	environmonto
$s:S=[[L \ge E] \times [L \ge T]].$	machine states
Semantic Domains of 'Interest'	
ENV=U.	environmente
REG=E.	registered values
STA=S.	states
LOC=L.	locations
	iocacions
Semantic Primitives	
Conts: $[L \ge S \ge E]$.	
Conts=	
} ls.(s † 1)1.	
Lose: $[L \rightarrow C]$.	
Lose=	
<pre>\$1s.<s\$1,\$1'.1=1'>FALSE,(s\$2)1'>.</s\$1,\$1'.1=1'></pre>	
Extend: $[L \ge C]$.	
Extend=	
<pre>\$1s.<s♥1,\$1'.1=1'>TRUE,(s♥2)1'>.</s♥1,\$1'.1=1'></pre>	
NewL: $[S \ge L]$.	
NewL=	
$s.1$ where $(s \neq 2)1$ =FALSE.	
Update: $[L \ge E \ge C]$.	
Update=	
}les.<}1'.1=1'≯e,(s♥1)1',s♥2>.	
Semantic Equations	
$B: [Exp \rightarrow U \rightarrow S \rightarrow E].$	
$C: [Com \neq U \neq C].$	
	(7.9.1)
[Let i:=e In c,]p=	
E[e]p + he. {NewL + h1. {Extend 1 o Update 1	$e \circ C[c_1(p[1/(311))] = 1$
in of some the state of the sta	
[i:=e]p=	, , , , , , , , , , , , , , , , , , , ,
$E[e]p + \lambda e.Update(p[i])e.$	
	(7.9.3)

7.3 Marking locations in use

Consider now the allocation of locations, in the language of Snapshot 7.9 which can be thought as an extension to Snapshot 7.5. The corresponding CGP, shown in Snapshot 7.10, works well and generates the expected code. However, the way that we would implement the primitives: <u>NewL</u>, <u>Extend</u> and <u>Lose</u> is not in the form that this SDS specification dictates. The functions <u>NewL</u> and <u>Extend</u>, which obtain and mark unused locations when necessary, seem to be abstracting a 'free storage' mechanism which is not the one dictated by a block structured discipline. The problem is that the location-deallocation mechanism, where the area function of the state ([L > T]) indicates which locations are in use, requires the function <u>Lose</u> to deallocate locations when required. It would seem reasonable that locations be marked 'in use' in the environment allowing 'automatic' deallocation of locations at the end of a block, as environments, and therefore details of storage in usage are as dynamic as the environment.

Accordingly, we rewrite in IDS the SDS definition. Those parts that differ from Snapshot 7.9 are shown in Snapshot 7.11. The corresponding CGP fragment is shown in Snapshot 7.12. The code that both specifications generate is the same, the main difference is the absence of the primitive Lose, whose activity now is taken by <u>reset</u>. So, what have we achieved with the IDS specification? We have shown how a realistic implementation treats the allocation of locations in a block structured language (level-offset pairs) by allocating them at compile-time, Also, we have shown that the State Analysis and Environment Analysis are both capable of transforming the corresponding semantics.

Snapshot 7.10: The Store with Locations(SDC)	RCDI
<pre>let trans.C(node) be switchon type^node into { case N3Let:</pre>	(7.10.1)
<pre>trans.E(p2^node).dest.(first.reg)</pre>	
$\{$ let $1 = NewL()$	
Extend(1)	
Update(1).dest.(first.reg)	
{ let old.env = this.env	
declare(domain.of(1), 1, pl^node)	
trans.C(p3 ^{node})	
reset(old.env)	
}	
Lose(1)	
}; endcase	(7 10 0)
	(7.10.2)
case N2Assignment:	
<pre>trans.E(p2^node).dest.(first.reg)</pre>	
Update(look.up(pl^node)).dest.(first.reg); endcase	(7.10.3)

Semantic Domains	Modifications to Snapshot 7.9
$p: U= [[Ide \ge L] \times [L \ge T]]$	
$s:S=[L \ge E].$	machine states
Semantic Primitives	
Extend: $[L \ge U \ge U]$.	
Extend=	
\$1p. <p\$1,\$1'.1=1'>TRUE,(</p\$1,\$1'.1=1'>	p♥2)1'>.
and the second states of the s	
NewL: $[U \ge L]$.	
NewL=	
$p.1$ where $(p \neq 2)1 = FALSE$.	
Update: $[L \rightarrow E \rightarrow C]$.	
Update=	
<pre>\$les.\$1'.1=1'>e,s1'.</pre>	
Semantic Equation	
C[Let i:=e In c,]p=	
$E[e]p + \lambda e \cdot \{\lambda I \cdot \{\lambda p' \cdot \{Upd\}\}$	ate le o C[c] $(p'[1/[i]]))/(r_{r_{1}})$
eventorial all least survey	(NewL p)
	(7.11.2)

TOTAL SALE AND ADDRESS OF ADDRESS	A Fragment
case N3Let:	·····································
<pre>trans.E(p2^node).dest.(first.reg)</pre>	
{ let old.env = this.env	
let $1 = NewL()$	
Extend(1)	
Update(1).dest.(first.reg)	
declare(domain.of(1), 1, pl^node)	
trans.C(p3^node)	
reset(old.env)	
}; endcase	(7.12.2)

7.4 Declaration and Invocation Environment

If we consider the virtual machine behaviour at the different times of declaration, invocation and execution of a function or procedure, we can isolate five different objects which are manipulated in a way that characterises most of the flavour of different programming languages. Namely, associated with every function or procedure (FP) there is:

- (I) Local binding: A function to give values for everything which is bound within the FP.
- (II) External binding: A similar but not equal function to give values for everything which is free in the FP.
- (III) Local workspace: A function to keep track of those locations defined within the FP
- (IV) Return continuation: The function mapping what remains to be done when the FP terminates.
- (V) Current continuation: The function mapping what remains to be done in the FP.

Some of these are defined at declaration time. For example, part of (I), (II), part of (III) and (V) are defined at this time in languages with static binding like ALGOL60. At invocation time, a copy of what was created at declaration time is made and some other functions are defined, for example (IV) and in dynamically bound languages (II). At execution time, some functions may be updated. For example (I) and (III) may be extended by

Snapshot 7.13: Environment (SDS).	Original Specification
Syntactic Domains	
e.cxp.	expressions
1:1de.	identifiers
Street	
Syntax	
$e ::= 1 Let i(i_1) = e_1 ln e_2 e_1(e_2)$	
Semantic Domains	
$t:T=[{TRUE} + {FALSE}]$	
v:V.	truth values
e:E=[V + F].	storable values
$c:C=[S \rightarrow S]$.	expression results
$k: K = [E \rightarrow C]$.	command continuations
d:D=[L + F].	expression continuations
$s:S=[[L \rightarrow V] \times [L \rightarrow T]].$	denotable values
1:L.	machine states
$F = [V \ge K \ge C]$.	locations
$p:U=[Ide \rightarrow D]$.	function values
	environments
Semantic Primitives	
New: $[S \rightarrow L]$.	
New=	
s.1 where $(st2)$ = FALSE.	
NewL: $[[L \rightarrow C] \rightarrow C]$.	
NewL=	
$k:[L \neq C]s.(k1(Toggle TRUE 1s))$ Where 1=New s).	
Free $[\cdot [1 \ge C \ge C]$	
FreeL=	
\$1cs.c(Toggle FAISE 1c)	
A-core(loggie FALSE 15).	
Toggle: $[T \rightarrow L \rightarrow C]$.	
Toggle=	
xtls. <s♥1, x1'.1="1'">t.(s♥2)1'>.</s♥1,>	
and the state of t	
Assign: $[L \rightarrow V \rightarrow C \rightarrow C]$.	
Assign=	
<pre>\$1vcs.c<\$1'.1=1'>v,(s\$1)1',s\$2>.</pre>	
Load: $[I, Y, K, Y, C]$	
Load=	
$\frac{1}{1}$	
X180.K((SV1)1)S.	
Wrong:C.	-
FRE DESTRICTION OF A DESTRICTION OF A DESTRICT	undefined
Semantic Domains of 'Interest'	
ENV=U.	
REG=[E + L].	environments
STA=S.	registered values
TEM=F.	states
	cemplates

- 165 -

and a

Semantic Equations	
$\mathbf{R}: [\mathbf{E}\mathbf{x}\mathbf{p} \neq \mathbf{U} \neq \mathbf{K} \neq \mathbf{C}].$	(7.13.1)
$R[Let i(i_1)=e_1 In e_2]pk=$	
$R[e_{2}]p'^{\dagger}k$	
Where p''=	
Fix	
(\xp'.p	
[xvk'.NewL{xl.Assign lv{R[e,](p'[1/[i,]]){xe'.FreeL 1{	k'e'}}}/[i]])
· ·	(7.13.2)
$R[e_1(e_2)]pk=$	
$R[e_1]p{\lambda e \cdot e?F \neq R[e_2]p{\lambda e' \cdot e'?V \neq \{e F\}(e' V)k, Wrong\}, Wrong\}.$	(7.13.3)
R[i]pk=	
$\{d.d?L \rightarrow Load(d L)k, k\{d F\}\}(p[i]).$	(7.13.4)
	and the second se

new declarations. For a full description of this model, see [Bor79].

If we now look at the domain definitions and equations of Snapshot 7.13, we can see that there is no clear mathematical machinery to abstract our model at the different times of declaration and invocation. Moreover, there is no distinction whatsoever between free and bound identifiers. From a (purely) mathematical point of view, it is not necessary to distinguish between them. However, from an implementation standpoint, we have to be able to tell whether a variable has been declared within the current function or procedure or in an external one, leading to a completely different behaviour of the look up function. For example it might be necessary to walk down a link chain in a stack.

Also, the domain of locations is not abstracted at an appropriate level. In the implementation of block structured languages it is reasonable to associate variables to 'offsets' within the workspace of a function or procedure (or perhaps block) at compilation time. Locations are only
allocated at execution time when a 'base' is calculated for all the offsets of the local variables.

To overcome these problems, we are going to modify the environment so that it precisely abstracts the model described above. The first four functions are going to be members of the environment while (V), the current continuation is still going to be passed as an explicit parameter to the valuations. F will be Invocation Record Frame and U an Invocation Record, or in terms of [Bor79] a Mini-Process State Descriptor (mPSD).

1:L.block structured locationsb:B.block structured locationso:O.basesf:F=[M x U x O x P].offsetsp:U=[M x U x [B x O] x K].function closuresIIIIIV

We now describe the parts of the environment, or mPSD in detail.

7.4.1 (I) Local Binding

The binding map:

 $m:M=[Ide \rightarrow D]$.

binding map

is the same as the the original environment domain. It binds identifiers to their denoted values. The empty binding map is defined to be:

Nild:D.	undefined
Nilm:M.	under med
Nilm=	We shall share a point of the second se
	a here & construction and the sectors of a first some sectors and a

Tedaun bebutanene eren ar anne service merineren gehannen berendet anderen eren

7.4.2 (II) External Binding

(Or Environment Link.) This is a reference to the environment of the textually enclosing procedure, where the denotation of free identifiers can be found. The function <u>LookUp</u> defined recursively, implies a behaviour which searches down this chain of environments when the denotation of a free identifier is required. Bound identifiers are found in the binding map. <u>LookUp</u> also converts offsets in D to their corresponding locations by reference to the Base in the local workspace component of U.

```
LookUp:[Ide > U > G].
LookUp[i]p=
(\d.d=Nild>LookUp[i](pEXT),d?0>Loc(Nloc<pBAS,d|0>) In G,d?F>d|F In G,Tg)
(p[i]).
```

7.4.3 (III) Local Workspace

In a function closure, or declaration record frame, the local workspace is an offset. It indicates which is the first free offset at declaration time, whereas in an environment in IDS it is a pair <b, o> indicating where the workspace starts and ends, respectively: <pBAS, FirstO> and <pBAS, pTOP>. It would be nice to identify locations with the product of bases and offsets in the following manner:

 $L=[B \times 0].$

However, if we do this we cannot achieve a realistic implementation semantics. As it stands, identifying L with $[B \times 0]$ (assuming B and O are countably infinite domains, so that for any B and O that might occur in a program the corresponding location exists) means we have an infinite number of locations - which is certainly not required in an implementation semantics. However, if we restrict B and O to being finite domains, we then imply an arbitrary limit to the number of blocks than can appear in a program, and an arbitrary number of locations that can be used in each. Neither of these two possibilities matches up with the standard semantics of the language.

So we are forced to postulate that there is a finite number of locations and a function:

Loc: $[N \rightarrow L]$.	undofined
	underined

which gives a proper location when given an integer in (i| $l \le i \le n$), Where n is the number of locations, and otherwise indicates an error. Also we need a function:

NIOC: I B V OI > NI					
Lice ([D x 0] 7 N].	undefined				
Manager and Address and a second second					

to indirectly find the location corresponding to each $[B \ge 0]$. (We do not make Nloc: $[[B \ge 0] \ge L]$ as we may want to store a <b, o> pair without assuming that the corresponding location exists.)

As we have already indicated, the existence of $\langle b, o \rangle$, for some b and o does not guarantee the existence of the corresponding location. We therefore need the function <u>New</u> again, this time with functionality:

```
New: [[B \times 0] \rightarrow L].
New\langle b, o \rangle =
Loc(Nloc\langle b, o \rangle).
```

We must of course, insist that the locations are used in ascending numeric order, with Nloc<FirstB, FirstO> = 1, and in fact B and O could be identified with N, but we prefer no to do this. Instead we define two primitive functions to obtain new bases and offsets, which we assume satisfy the above two conditions:

tienst[[b x o] / b].	undefined
Next0: $[0 \neq 0]$.	undefined
and two constants which are t	he first base and first offset:
FirstB:B.	undefined
First0:0.	undefined
To increase the size of the w	orkspace at invocation time we use the post-fix
operator:	
p[NextO(pTOP) / TOP] = p' Where p'=X.NextO(pTOP) pX	If X=TOP Otherwise
Getting a block structured loo single activity modelled by	cation and binding it to an identifier is now a y the primitive functions <u>BindF</u> at declaration
time, and by <u>BindP</u> at invocation	ion time:
BindF: [Ide $\geq M \geq 0 \geq [M \ge 0]$. BindF[i]mo=	· · · · · · · · · · · · · · · · · · ·
$\langle m[o/[i]]$, NextO o>.	
BindP: [Ide \Rightarrow U \Rightarrow U].	

The forth element in a function closure (F), is a member of the domain of function values (P):

 $P=[U \Rightarrow V \Rightarrow C]$. function values

7.4.4 (IV) Initial and Return Continuation

It models the meaning of the function which is expecting an environment and an actual value for its formal parameter. While in an environment (U), it is a member of the domain of return continuations (C). In relation to [Bor79], (IV) can be seen as a reference to the current continuation field of the calling mPSD. The task of activating a function closure (creating a new invocation environment), is modelled by:

```
Activate: [F \Rightarrow [B \times 0] \Rightarrow V \Rightarrow K \Rightarrow C].
Activate f<b,o>vk=
{f\psi}<f\psi1,f\psi2,<NewB<b,o>,f\psi3>,k>v.
```

Assuming contiguity of caller and callee, activating means pushing the callee's base on top of the workspace of the caller's invocation environment.

Snapshot 7.14: Environment (IDS). Original Specification Semantic Equations $R: [Exp \rightarrow U \rightarrow K \rightarrow C].$ (7.14.1) $R[Let i(i_1)=e_1 In e_2]pk=$ R[e,]p3k Where p3= Fix()p'.()<m,o>. p[<m,p',o, %p''v.{%l.Assign lv{R[e]]p''{pRET}}}(New<p''BAS,</pre> p''[i,]|0 >/[i]])(BindF[i]]Nilm First0)). (7.14.2) $R[e_1(e_2)]pk=$ R[e1]p{xe.e?F>R[e2]p{xe'.e'?V>Activate(e|F)(pLOC)(e'|V)k,Wrong},Wrong} (7.14.3)R[i]pk= $\{ \\ g \cdot g ? L \\ Load(g | L) \\ k , g ? F \\ k(g | F), \\ Wrong \\ (Look Up[i]p). \end{cases}$ (7.14.4)

After incorporating the new environment structure and their associated primitive functions, the IDS definition looks as Snapshot 7.14. The equation (7.14.2) shows how the binding map (m) is formed from the empty one (Nilm) with an additional binding of the parameter $[i_1]$ to the first free offset, an external binding (p') which is the newly created fixed point environment, an indication of how many offsets have already been claimed (one in this case) and finally, the function value in P. A Posteriori Evaluation: In general, it seems that our transformational system developed beyond our initial goal. There are many issues, like the treatment of recursion, which are perfectly transformable from a SDS specification. Up to the time of their development they were considered not transformable from other than an IDS specification. As opposed to the preceding three sections, where we have shown the use of an IDS to generate a more efficient CGP, the IDS version that we have just developed is not used any longer in the same way. It represents ideas that we had early in our research, with respect to the the way that we were going to handle recursive procedure and functions. The transformations of Chapter 4 show how our system is quite capable of recognising the crucial moment of entry, exit and call, without the need of any implementation idea abstracted at the level of IDS. In this respect, section 7.4 is a blind-alley.

- 172 -

CHAPTER 8

Conclusion

Every BCPL snapshot shown speaks for itself. The two main examples of the correspondence described are shown in Appendices D and E. They are the final example language of [Sto77] and GEDANKEN. The structure and operation of the code generators obtained for all examples shown is in effect very similar to the one we might have produced by hand. Moreover, the structure of the code that these programs generate is as efficient as the code a hand coded program would generate. To our knowledge, today, there are no compiler generators, directed from a denotational semantics, which achieve this level of efficiency, nor systems whose output is a program written in a systems programming language.

Our research has shown that this task is possible. However, we do not claim a level of generality which allows the transformation of every possible semantic specification. Our transformation system (and associated implementation), needs further investigation: an exhaustive analysis which has been started in order to allow completion of our major examples. A good step in this direction would be the definition of a canonical form of the concrete semantics. The problem is that there are many different ways of representing a function whose only importance is its value (referential transparency). But if a semantic directed generator depends on the concrete semantics, then the way that a semantic function is described is important. P. Mosses's SIS system achieves generality (and correctness) by uniformly translating into lambda, the cost is the lack of efficiency. If one believes that GEDANKEN is not general enough, then we failed to achieve generality. Believing this or not, what we have gained is efficiency at the same level

of a hand coded compiler. The cost of our method is that a non-uniform translation is not as 'automatically' correct, as one which faithfully implements the conversions of the lambda calculus.

We have mainly concentrated on the final part of a compiler because this area relates directly to a semantic specification. A syntactic specification, of course, relates to the initial part. The middle area, compile-time type checking, has only been partially considered:

If CHA is the representation of the source program as a character string, SYM the internal representation as a sequence of symbols, TRE the internal representation of programs in the form of a tree and COD the final outcome of a compiler, then today, we are equipped with the following systems which generate programs written in BCPL:

PROGRAM	1	FUNCTION	1	UNDERLYING THEORY	1	SOLVED BY	1	REFERENCE
	1		1		1		1	
scanner	1	[CHA → SYM]	1	Finite state machine	1	LEXGEN	1	[Suf78a]
parser	1	[SYM \rightarrow TRE]	1	Push down automata	1	LL1	1	[Suf78b]
translator	1	$[TRE \rightarrow COD]$	1	Denotational Semantics	1	ISL	1	this thesis
And we still	11	require:						

checker | [TRE > TRE] | Denotational Semantics | not done |

It is now imperative to prove that our transformations are correct and preserve meaning. A first attempt to prove this was to regard the generated program as an operational definition and then to relate it to the original specification proving the congruence of the definitions. The problems with this method are, firstly, that it is very difficult, because the domains are very dissimilar. Secondly, this proof has to be restated for each new language. An alternative approach would be to formalise the semantics of the metalanguage in which the transformations themselves are expressed and then relate the WFF_s to the WFF_t through them. This method is attractive not only because of the possibilities of proving the correctness of our system in a general and language independent way, but also because, having formalised the transformations, one could design an automaton to perform their action. As M. Henson suggested, this would be a compiler-compiler-compiler (3 times). At present, we have implemented (after several years of programming effort) our ISL system (briefly described in Appendix A), which consists of a collection of BCPL modules, which perform the different levels of transformation, rather like a collection of experts, each one relating to a particular denotational feature (a domain of interest) and to a particular implementation technique (of our choice),

An interesting open question is the possibility of extracting, from the DS specification, information about the kind of 'virtual machine' that a particular language might require. At present, we recognise only the location where for example, the CGP must plant code for procedure entry and exit. Our translator generates statements of the form <u>trans.entry(P)</u> and <u>trans.exit(P)</u>, but it is unable to predict the sort of code that these procedures should plant, i.e: should the first one get space for an activation record from a stack or from a heap?

Another interesting open question, is the relationship between the translator, as described above and: interpreter: [TRE \Rightarrow MEANING]. Our transformation system has been oriented to produce code generators; a similar system, using similar techniques could be written to produce an

interpreter.

We have developed a system to generate code generators for a class of programming languages, with a target code as general as can be expressed within the constraints of the generated primitives. We could actually fix the programming language, and generalise the target machines for a wider class of hardware configurations, say for mini-computers. This might prove to be very useful when considering that today, hardware developments change faster than software developments.

Finally, recall the problem of generating a parser from a BNF specification as an analogy to the problem of generating a code generator, as presented in Chapter 1. Suppose that one wishes to generate or hand write a top down analyser, with one symbol of lookahead and no backtracking. This means that the original BNF specification, has to be rewritten to fulfil the one-track condition [Bor79]. What we have done, is to design and implement an automatic system, analog to an LLI parser generator, which also expects the specification written in a particular form. The problem is that we do not know, for certain, which are the conditions that the denotational specification has to fulfil. In this sense, we believe that our research is a step towards the definition of such conditions.

* * *

References

AaU69	A.V.Aho and J.D.Ullman. Syntax Directed Translations and the Pushdown Assembler. pp 37-56 in J.Computer and Systems Sciences 3-1, 1969
AaU72	A.V.Aho and J.D.Ullman. The Theory of Parsing, Translation, and Compiling. Prentince-Hall, 1972.
ADA80	Formal Definition of the ADA Programming Language. Preliminary version. INRIA, 1980.
Bjo77	D.Bjorner. Programming languages: Formal development of interpreters and compilers. pp 1-21 in International Computing Symposium, ed E.Morlet and D.Ribbens, North-Holland, Amsterdam, 1977.
Bor79	R.Bornat. Understanding and Writing Compilers. Macmillan. 1979
Bro60	R.A.Brooker and D.Morris. An Assembly Program for a Phrase Structure Language. Harrogate Conference of the British Computer Society, 1960. also in the Computer Journal 3-3
Bro62	R.A.Brooker and D.Morris. A General Translation Program for Phrase Structure Languages. JACM 9, 1962.
Bro63	R.A.Brooker. The Compiler-Compiler. Annual Review pp 229-275 in Automatic Programming, 3. Pergamon, Elmsford, N.Y. 1963.
Cur58	J.B.Curry and R.Feys. Combinatory Logic, Volume I. North-Holland, Amsterdam, 1958.
Gan80	H.Ganzinger. Transforming Denotational Semantics into Practical Attribute Grammars. pp 1-69 in Semantic Directed Compiler Generation, ed N.D.Jones, Lecture Notes in Computer Science 94. Springer-Verlag, Berlin, 1980.
Gau81	M.C.Gaudel. Compiler generation from formal definition of programming languages: a survey. pp 96-114 in Formalization of Programming Concepts, Intl. Colloquium, Peniscola, Spain. Lecture Notes in Computer Science 107. Springer-Verlag, Berlin, 1981.
Gri71	D.Gries. Compiler Construction For Digital Computers. Wiley International Edition, 1971.
Hen82	M.Henson and R.Turner. Completion Semantics and Interpreter Generation. ACM Principles of Programming Languages, 1982
Ing61	P.Z.Ingerman. Thunks. pp 55-58 in CACM 4-1, 1961.

- Iro61 E.T.Irons. A Syntax Directed Compiler for ALGOL60. pp 51-55 in CACM 4-1, 1961.
 - Jon80 N.D.Jones and D.A.Schimdt. Compiler Generation from Denotational Semantics. pp 70-93 in Semantic Directed Compiler Generation, ed N.D.Jones, Lecture Notes in Computer Science 94. Springer-Verlag, Berlin,1980.

- Knu68 D.E.Knuth. Semantics of Context-Free Languages. pp 127-146 in Math. Systems Theory J. 2-2, 1968.
- Knu80 D.E.Knuth and L.Trabb Pardo. The Early Development of Programming Languages. pp 197-273 in A History of Computing in the Twentieth Century. Academic Press, 1980
- Lan65 P.J.Landin. A Correspondence Between ALGOL60 and Church's Lambda-Notation. pp 89-101,158-165 in CACM 8, 1965.
- Lew68 P.M.Lewis and R.E.Sterns. Syntax-Directed Transduction. pp 464-488 in JACM 15-3, 1968.
- Lew79 J.Lewi, K. De Vlaminck, J.Huens and M.Huybrechts. A Programming Methodology in Compiler Construction. North-Holland, Amsterdam, 1979.
- MaS76 R.E.Milne and C.Strachey. A Theory of Programming Language Semantics. Chapman and Hall, London 1976.
- McC60 J.McCarthy. Programs with Common Sense. Proceedings of the Symposium on the Mechanization of Thought Processes. National Physiology Laboratory, Teddington, England, 1960.
- Mos74 P.D.Mosses. The Mathematical Semantics of ALGOL60; Technical Monograph PRG-12, Programming Research Group, University of Oxford, 1974.
- Mos75 P.D.Mosses. Mathematical Semantics and Compiler Generation. PhD. thesis. University of Oxford, 1975.
- Mos76 P.D.Mosses. Compiler Generation using Denotational Semantics. Mathematical Foundations of Computer Science. Lecture Notes in Computer Science 45. Springer-Verlag, 1976.
- Mos78 P.D.Mosses. SIS: A Compiler Generator System using Denotational Semantics. Reference Manual, University of Aarhus, 1978.
- Mos79 P.D.Mosses. SIS Semantic Implementation System. Reference Manual and User Guide. DAIMI MD-30, Computer Science Department, Aarhus University, Aarhus, Denmark, 1979.
- Pau81 L.Paulson. A Semantic Directed Compiler Generator. ACM Principles of Programming Languages, 1982.
- Ple82 J.M.Bodwin, L.Bradley, K.Kanda, D.Litle and U.F.Pleban. Experience with an Experimental Compiler Generator Based on Denotational Semantics. pp 216-229 in Proceedings of the ACM-SIGPLAN'82 Symposium on Compiler Construction. 1982.
- Ran75 System Structure for Software Fault Tolerance. IEEE Transactions on Software Engineering, SE-1. 1975

- Ras79 M.R.Raskovsky and R.Turner. Compiler Generation and Denotational Semantics. Fundamentals of Computation Theory, 1979.
- Ras80 M.R.Raskovsky and P.Collier. From Standard to Implementation Denotational Semantics. pp 94-139 in Semantic Directed Compiler Generation, ed N.D.Jones, Lecture Notes in Computer Science 94. Springer-Verlag, Berlin, 1980.
- Ras81 M.R.Raskovsky. Generating a Real Compiler from a Denotational Semantics. Seminar Review. Institut National de Recherche en Informatique et en Automatique, 1981.
- Ras82 M.R.Raskovsky. Denotational Semantics as a Specification of Code Generators. pp 230-244 in Proceedings of the ACM-SIGPLAN'82 Symposium on Compiler Construction. 1982.
- Rey70 J.C.Reynolds. GEDANKEN A Simple Typless Language Based on the Principle of Completeness and the Reference Concept. pp 308-319 in CACM 13-5, 1970
- Rey72 J.C.Reynolds. Definitional Interpreters for Higher-order Programming Languages. Proceedings of the 25th ACM National Conference, 1972.
- Rey74 J.C.Reynolds. On the Relation Between Direct and Continuation Semantics. pp 141-156 in Proceedings of the Second Colloquium on Automata, Languages and Programming. Springer-Verlag, Berlin, 1974.
- Ric79 M.Richards and C.Whitby-Strevens. BCPL, the Language and its Compiler. Cambridge University Press, 1979.
- Sco70 D.Scott. Outline of a Mathematical Theory of Computation. Technical Monograph PRG-2, Programming Research Group, University of Oxford, 1970.
- Set82 R.Sethi. Control Flow Aspects of Semantic Directed Compiling. pp 245-260 in Proceedings of the ACM-SIGPLAN'82 Symposium on Compiler Construction. 1982.
- Sim68 O.J.Dahl, B.Myhrhaug and K.Nygaad. The Simula 67 Common Base Language. Norwegian Computing Centre, Oslo. 1968
- Sto76 J.E.Stoy. The Congruence of two Programming Language Definitions. Theoretical Computer Science, Vol 13-2, 1981.
- Sto77 J.E.Stoy. Denotational Semantics: The Scott Strachey Approach to Programming Language Theory, The MIT Press, 1977.
- Str66 C.Strachey. Towards a Formal Semantics. pp 198-220 in Formal Language Description Languages for Computer Programming. ed. T.B.Steel, North-Holland, Amsterdam, 1966.
- Str73 C.Strachey. The Varieties of Programming Languages. Technical Monograph PRG-10, Programming Research Group, University of Oxford, 1973.

- Suf77 B.Sufrin. FORM: A Text Editor. Department of Computing Science, Essex University, 1977.
- Suf78a B.Sufrin. LEXGEN: A Lexical Analyser Generator. Department of Computing Science, Essex University, 1978.
- Suf78b B.Sufrin. LL1: A Parser Generator. Department of Computing Science, Essex University, 1978.
- Ten76 R.D.Tennent. The Denotational Semantics of Programming Languages. pp 437-453 in CACM 19-8, 1976
- Wij75 A.van Wijngaarden et al. Revised Report on the Algorithmic Language ALGOL68, pp 1-236 in Acta Informatica 5, 1975.

APPENDIX A

The Implementation

We briefly describe the implementation of a system named ISL (Implementation Semantic Language), which is the result of the programming efforts during our research. This major software project was thought, in the beginning, to be the basis of our contribution. Such tremendous programming effort became an anonymous contribution in the light of the developments that were to come, All transformations described have been automatically carried out by ISL, all final CGPs have been successfully compiled in BCPL, loaded with the machine interface provided by the ISL library and tested accordingly.

A.1 Early History

The ideas for a system which could serve the purpose of aiding in the construction of the code generation phase of a compiler, originated in the spring of 1977. Two main projects were developed: An interpreter for a toy language, with an ALGOL60 level of difficulty and the denotational semantics for the same language, whose original semantic description was informally described in English.

It was understood at the time, and still remains the corner stone of the research, that denotational semantics has abstracted, at an appropriate level, the behaviour of a program, and both, semantic description and implementation, were addressing the same issue at different levels of abstraction. When both projects were completed we had:

> LEX scanner SYN parser DS interpreter

XIGNEDEA .

The left hand side, above, consists of language descriptions with different underlying theories. The second column consists of programs written in BCPL. At Essex, there are two systems to aid in the construction of these programs: One, a lexical analyser generator LEXGEN [Suf78a], the other a parser generator LL1 [Suf78b]. Both systems generate BCPL programs. While staring at the semantic description and at the interpreter, hand written in BCPL, we could picture a way to go from one into the other, a parallel was immediately drawn; what was required was the missing generator.

THE PART OF THE PARTY PARTY PROVIDED THE PROOF

A.2 Pilot Project have repaired and we behive a successful entrance.

This thesis grew out of this idea. A main design decision was taken at an early stage. We were going to address the problem of automatically generating a code generator, as opposed to an interpreter; firstly, because it was thought to be harder and secondly, because we envisaged efficiency in the target code.

Astronomy and ALCONDER to you of the standard and all departments

The implementation of ISL began in 1979. The original idea was to produce a system to transform 'simple programming language specifications' into BCPL programs constituting the code generation phase of a compiler for the given language. But, however 'simple' the languages, this was considered a major undertaking and we needed some experimenting in order to get experience in the problems to come. Therefore the first pilot project was to take the early denotational description and hand write, a stepwise transformation into a compiler that we also quickly hand coded as target. This project was immediately followed by a language oriented automatic transformation, which gave the necessary insight into the problems to come. Even though the system was oriented to transform only one language, an internal representation of the source semantic specification was required, We needed a parser and a type checker for the semantic metalanguage. The latter was not only required as an aid in writing semantic descriptions; it was already understood at that time that such information would be paramount in the transformations to follow. One can understand why P. Mosses first SIS system did not have type checking, because his transformations do not address the semantic objects described, only the three main syntactic constructions of the lambda calculus. But we wished to recognise semantic objects like environments and continuations; hence, type checking was a main requirement for subsequent use in the transformation process.

A.3 The ISL System

At that time (fall of 1979), we had such a large program in BCPL, that an overlay system was immediately designed, and subsequently, we rewrote and partitioned the early system in different modules:

ISLINI - Initialisation.

Any language processor has some common activity at initialisation time such as: opening files for input, output and listing, predefine names and initialise stack. The ISL system requires it and also all compilers generated with the aid of LEXGEN, LLI and ISL. This module constitutes precisely this process. To aid in the initialisation parts of the generated compilers, an auxiliary library named PROLIB was implemented out of its code. PROLIB provides the front-end process to any language processor and has been used for several years by the author and his students.

- 183 -

ISLPAR - The parser.

Generated with LEXGEN and LL1. The input language was not fixed for a long time, so these automatic aids proved to be invaluable. A description of the concrete syntax is included at the end of this section.

ISLDES - Description phase.

A semantic description consists of a set of mutually recursive equations and definitions whose order is irrelevant. Hence, a complete separate pass over the internal tree representation was designed to fix forward references.

ISLEXP - Type checking expressions.

Because of the complex functionality definitions, this module proved to have a level of difficulty equivalent to an ALGOL68 type checker. It took more than 6 man-months to develop.

ISLDDT - Interactive debugging.

Invaluable aid which can be interleaved between any other module, allowing the scrutiny of every piece of information in the internal tree representation and interfaces to DEC-10-DDT for machine code debugging.

ISLOUT - Pretty printing.

Used in combination with the text editor FORM [Suf77] to produce all snapshots of this thesis.

At this stage we were able to construct a well formed internal representation of a semantic specification, which closely followed the theoretical ideas of the Advice Taker: a property list for any expression about which information is known that does not follow from its structure [McC60],

The next stage, was to perform the transformations. This was done by recursively walking and transforming in core the internal tree representation. One different module was written for every different activity. So the system became a collection of 'experts' which performed the different levels of transformations. Each module constituted an active filter, a tree to tree translator. In between each module, ISLOUT or ISLDDT could be called to perform intermediate listings or debugging. The final version consists of the following modules:

ISLTR1	- Normalisation
ISLTR2	- State Analysis
ISLTR3	- Syntactic Transformations
ISLTR4	- Splitting Continuations
ISLTR5	- Destination Analysis
ISLTR6	- Continuation Analysis
ISLTR7	- Environment Analysis
ISLTR8	- Optimising Continuations
ISLTR9	- Optimising Transformations
ISLTRA	- BCPL

As it can be seen, they correspond to each stage described in Chapters 3 to 6. They are processed in strict sequence and because of the pragmatics of their activity, the order can not be altered.

Being an overlayed system, there is no theoretical limit in the number of 'experts' that we could add or interleave. If in the future, we wish to include a different denotational feature, or a different implementation technique, then it is as simple as adding another module. The size of each module is, in general, a couple of pages of BCPL code. They are short because of the existence of a library ISLLIB which contains common code to all modules.

All the ISL system consists of 10.700 lines of pure (comments are not counted) BCPL code.

A.4 Concrete Syntax of WFFs

Comment	::=	= COMMEN
EndOfLine	::=	= EOL
Numeral	::=	= NUMERAT.
Quotation	::=	OUOTATION
CurlyName	::=	CURNAM
DomainName	::=	SEMNAM
DomainToken	::=	SEMNAM I SEMIST
SyntacticName	::=	SYNNAM
SemanticName	::=	SEMNAM
SyntacticToker	1 ::=	SYNNAM I SYNVAR I OUOTATION I TUDNING
SemanticToken	::=	SEMNAM SEMVAR SEMIST CURNAM + C
SynInsideSem	::=	"[" Syntax "]"
Isl	::=	"Isl eol comment"
Syn	::=	"Syn eol comment"
Sem	::=	"Sem eol comment"
End	::=	"End eol comment"
S	::=	IslSpe
IslSpe	::=	Isl IslBod End
Is1Bod	::=	[IslSpe SynSpe SemSpe CotSpe 1*
SemSpe	::=	Sem SemDef*
SynSpe	::=	Syn SynDef*
GetSpe	::=	"Get" Quotation IslBod
SynDef	::=	SyntacticName [SynNamDom SynNamDro]
SynNamDom	::=	: DomainName . Comment
SynNamPro	::=	"::=" SynAlt
SynAlt	::=	Syntax [" " EndOfLine? Syntax 1#
Syntax	::=	SyntacticToken SyntacticToken*
SemDef	::=	SemanticName SemDefNam CurlyName SemDefCom
SemDefNam	::=	SemUnd SemDefSel SemDom SemDeffur
		SemDefNamCol
SemUnd	::=	"?" . Comment
SemDefSel	::=	"==" SemLam . Comment
SemDom	::=	• Comment
SemPriEqu	::=	LamLst = SemEqu . Comment
SemDefNamEqu	::=	= [SemDomFun SemNulEqu]
SemDomFun	::=	DomBra . Comment
SemNulEqu	::=	SemEqu . Comment
SemDefNamCol	::=	: [SemNamFun SemDefNamColNam]
SemNamFun	::=	DomBra . Comment
SemDefNamColNam	::=	SemanticName [SemNamDom SemNamDomFun]
SemNamDom	::=	. Comment
SemNamDomFun	::=	= DomBas . Comment
SemDefCur	::=	SemCurUnd SemCurFun SemCurFau
SemCurUnd	::=	"?" . Comment
SemCurFun	::=	: DomBas . Comment
SemCurEqu	::=	LamLst? = SemEqu . Comment
LamLst	::=	LamBas LamBas*
	::=	LamTok < [LamTok [, [LamTok ""]]* 12 \
LamTok	::=	SemanticToken [: DomBas]?
DomExp :	::=	DomEx1 ["->" DomEx1]*
JOWEX1 :	:=	DomEx2 [+ DomEx2]*

DomEx2	::=	DomEx3 [. DomEx	3]*
DomEx3	::=	{ SemanticName }	DomBas
DomBas	::=	DomainToken Do	mBra
DomBra	::=	"[" DomExp "]" "	*"?
SemEqu	::=	SemExp	
SemExp	::=	SemEOO ["Where"	LamLst = SemExp]?
SemE00	::=	SemEO1 [OprPrim	SemEO1]*
SemE01	::=	SemEO2 SemLam	
SemE02	::=	SemE03 [OprCond	SemExp , SemEO1]?
SemE03	::=	SemEO4 [OprInte	DomBas]*
SemE04	::=	SemEO5 [OprDoma	DomBas]*
SemE05	::=	SemEO6 [OprDyad	SemE06]*
SemE06	::=	SemEO7 [OprRela	SemE07]?
SemE07	::=	SemEO8 [OprList	SemEO8]*
SemE08	::=	OprMona? SemE09	
SemE09	::=	SemEll [SemEl0	"" ?]*
SemE10	::=	SemEll SemPost	Ass
SemE11	::=	(SemExp)	{ SemExp } Numeral SemanticToken
		Quotation SemT	up
SemLam	::=	"Lam" LamLst . [SemE01 "" SemE01]
SemPostAss	::=	"[" SemExp / Sem	Exp "]"
SemTup	::=	< [SemExp [, [SemExp ""]]*]? >
OprPrim	::=	: * @ "=>"	
OprCond	::=	"->"	
OprInte	::=	"?" "??"	
OprDoma	::=	" " "In"	
OprDvad	::=	+ 1 -	
OprRela	::=	= "Ea" "Ne"	"Ls" "Le" "Gr" "Ge"
OprList	::=	1 1 1 1 %	
OprMona	::=	#	
Concrete symb	01	Snapshot form	Comment
[]		l	Open Syntax
1]		1	Close Syntax
-			
Lam		X	Lambda
*		*	Composition with side effects
@		<u>+</u>	Composition without side effects
;		<u>o</u>	Composition
->		>	Conditional and Function Constructor
•.		x	Cross product
1		+	Chop
			on p
		v	Select
SEL==>i.	е	iSEL==e	Selector

APPENDIX B

Transformation Rules

Rules marked with a * next to their number, are those redefined or extended.

B.1 Normalisation

v[s ₁]p=e ₁ . v[s _n]p=e _n .			<pre>n>l let v node p be switchon type^node into { case [s₁]: e₁; endcase case [s_n]: e_n; endcase } n=l let v pode p be</pre>	[R1.1]
-	_!	I	let v node p be e ₁	
kip.e	=>	xi.	p.e	[R1.2]

 e_0 Where $p=e_1 \implies \{ \text{ let } p=e_1 ; e_0 \}$ [R1.3]

B.2 State Analysis

when	i:STA	Xi.i	=>	{}	[R2.1]
when	i:STA	Xi.e	=>	e	[R2.2]
when	i:STA	e ₀ i	=>	e ₀	[R2.3]
when	e:STA	e ₀ e	=>	{ e In COD; e ₀ }	[R2.4]
when	i:STA	e≯e _l ,i	=>	e≯e ₁ ,{}	[R2.5]
when	i:STA	e≯i,e _l	=>	e>{},e1	[R2.6]
when	i:STA	<pre>Strict();i.e)</pre>	=>	Xi.e	[R2.7]
		Is	=>	{}	[R2.8]
when where	$e_0:[STA \neq 1]$ $C = \{e_0:$ $C = e_1(e_0)$	$\begin{bmatrix} D_1 \end{bmatrix} = \begin{bmatrix} e_0 & e_1 \\ e_1 \end{bmatrix} = \begin{bmatrix} If & D_1 \end{bmatrix} = STA$ In D_1) otherwise	=> or D se	C 01=ANS (i.e: e ₀ :COD)	[R2.9]

when	for any	domain D and $D_2^1 e_1$	=> (STA) =	$(e_1 \text{ In } [D \neq D_2])(e_1 \text{ In } D)$ D and $e_1:[D \neq [STA \neq D_2]]$	[R2.10]
when	for any	domains $D, \overline{D}_1^{e_1}$ and	=> D ₃ e ₀ :	$(e_0 \text{ In } [D_1 \neq D]) \underline{o}(e_1 \text{ In } [D \neq D_3])$ $[D_1 \neq [DxSTA]] \text{ and } e_1 : [D \neq [STA \neq D_3]$	[R2.11]]
when	i:STA	$i[e_1/e_2]$	=>	trans.update(e1, e2)	[R2.12]
when	i:STA	i(e)	=>	trans.load(DOM(e), e) In REG	[R2.13]
when	i:STA	<e_0, i=""></e_0,>	=>	e ₀	[R2.14]
when	e ₁ :STA	<e_0, e1=""></e_0,>	=>	{ e ₀ ; e ₁ }	[R2.15]

B.3 Syntactic Transformations

- let $vi_1 \cdots i_n$ be C => let $v(i_1, \cdots, i_n)$ be C [R3.1]
 - $e_0 e_1 \cdots e_n \implies e_0(e_1, \dots, e_n)$ [R3.2]

$$(\lambda i.e)(e_1) \implies \{ let i=e_1; e \}$$
 [R3.3]

$$(\lambda i.e)(e_1)(e_2) \implies \{ let i=e_1; e(e_2) \}$$
 [R3.4]

when not i:COD (λ i.e){C; e₁} => C; { let i=e₁; e } [R3.5]

$$Strict(e) \Rightarrow e$$
 [R3.6]*

when e:TEM and there is no e_2 such that Non-Strict(e_2):TEM

B.4 Splitting Continuations

when
$$e_0(e_1) \Rightarrow e_1$$
; e_0 In COD [R4.1]

when
$$(\lambda i.e_1):KON$$
 $(P, \lambda i.e_1) = P = e_0(P).cont.(e_1).dest.(i)$ [R4.2]

$$let v(D, i) be C | => | .dest.(? In d) [R4.3]$$

when i:KON=[d>CD] | be C

when i:KON=[d
$$\rightarrow$$
COD] e(P, i) | => | e(P).cont.(i In COD) [R4.4]
_______.dest.(? In d)

when i:COD let
$$v(D, i)$$
 be C => let $v(D)$.cont.(i) be C [R4.5]

when
$$e_1:COD$$
 $e_0(P, e_1) \implies e_0(P).cont.(e_1)$ [R4.6]

when
$$e_0$$
:KON $e_0(P, \lambda i. ...e) | => | do $e_0(P).cont.(...).dest.(i)$ [R4.7]$

B.5 Destination Analysis

e(P) => e(P).dest.(reg) In COD [R5.3]*
when (e(P):REG or e(P):THU) and not e:ENV

{ let i=e(P); C } => { e(P).dest.(i) In COD; C } [R5.4]* when (e(P):REG or e(P):THU) and not e:ENV, rename $i=>(i=a_k)>reg+k$, reg

when
$$e_1 = e(P)A.dest.(E)$$
 $| = | e_1 = e_1 = e_2(P_0, E, P_1)$ [R5.5]

$$e(P, i) | \Rightarrow | e(P).dest.(i) In COD$$
 [R5.6]
when i:REG and P not null _ | ___

 $\{C_{0}; e; C_{1}\} \xrightarrow{|} | = > | \{C_{0}; C; C_{1}\}$ or $e_{0} \xrightarrow{>} e, e_{2} | = > | e_{0} \xrightarrow{>} C, e_{2}$ or | | or[R5.7]* $e_0 \neq e_1, e_1 \Rightarrow | e_0 \neq e_1, C$ _______ where C = trans.load(DOM(e), e) In REG when NeedsLoad NeedsLoad = e:REG and not e:COD and where ((e=i and not i:ENV) or $e=E_0!E_1$ or $e=#e_0$ or e=n or e=q) => [first.reg/reg]e [R5.8]* e when e i and (e:TEM or e:THU) => [first.par/i]e₁ In DOM(e) e:TEM and i:REG e [R5.9] when where $e = \lambda i \cdot e_1$ => trans.load(DOM(e), e) In REG [R5.10]* when e: TEM or e: THU e e(P) => e(P).dest.(first.reg) [R5.11] when e:TEM let v(D).cont.(P).dest.(?:d) | | let v(D).cont.(P).dest.(reg) be C | => | be C [R5.12] when dCREG e.cont.(P).dest.(?:d) => e.cont.(P).dest.(reg) [R5.13] when dCREG e.cont.(P).dest.(i) $| \Rightarrow |$ e.cont.(P).dest.(i) G | rename $i=>(i=a_k)>$ reg+k, reg [R5.14] when i:REG e.cont.(P).dest.(?:d) => e.cont.(P).dest.(first.reg) [R5.15] when e: TEM and dCREG | { let old.env = this.env for I=1 to E_0 do C_1 | => | unless E_1 do C_2 | | | unless E_1 do C_2 | | unless E_1 do C_2 | | reset(old.env)⁵ [R5.16] $C_{1} = e_{1}(P_{1}) \cdot \text{cont.} (\dots) \cdot \text{dest.} (I_{1})$ $C_{2} = \{^{1}C_{7}; e_{2}(P_{2}) \cdot \text{cont.} (C_{3}) \cdot \text{dest.} (I_{2}); C_{8} \}$ $C_{3} = e_{3}(\langle I_{1}, \dots, I_{2} \rangle)$ $C_{4} = e_{1}(P_{1}) \cdot \text{cont.} (\text{trans.dump}(I_{1}); \dots) \cdot \text{dest.} (I_{1})$ $C_{5} = \{^{1}C_{7}; e_{2}(P_{2}) \cdot \text{cont.} (C_{6}) \cdot \text{dest.} (I_{2}); C_{8} \}$ $C_{6} = e_{3}(\text{old.off}) \cdot \text{dest.} (I_{1})$ any C_{7}^{3}, C_{8} when where for I=1 to E do C_1 | => | { let dmp.loc = trans.dump(I_1) C_2 | I=1 to E do C_3 [R5.17] C_2 | C_2 when $C_1 = e_1(P_1, I_1, P_2)A_{I_1:REG and any C_2}$ where $C_3 = \{ C_1; trans.Ioad(DOM(I_1), dmp.loc).dest.(I_1) \}$

let v(D_0, i, D_1) be C | => | let v(D_0, i, D_1) be C [R5.18]
when i:REG [R5.18]
when e_0:REG and e_1:REG and o is one of: =, Eq, Ne, Ls, Le, Gr, Ge
where XX is respectively one of: EQ, EQ, NE, LT, LE, GT, GE

where e =
$$\lambda i \cdot e_1$$
 [R5.20]
when e:TEM and there is an e_2 such that Non-Strict(e_2):TEM
e().cont.(e_1).dest.(i) | => | [first.reg/i]e_1 [R5.21]
when e:THU

B.6 Continuation Analysis

(8,09)

when i:COD $\begin{cases} C_0; i; C_1 \\ or \\ e_0 \neq i, e_2 \\ or \\ e_0 \neq e_1, i \\ e_0 \neq e_1, i \\ e_0 \neq e_1, e_1 \\ e_0 \neq e_1$

*

when where	$e_0 \neq e_1, e_2 \Rightarrow C$ (EOISDes or EOISIde or EOISSkp) and i::REG $C = \{ C_1; C_2; C_3; C_4; C_5; C_6; C_7; C_8; C_9 \}$ $C_1 = NoEndCo \Rightarrow null, let econd.code = forward(COD)$ $C_2 = NoFalse \Rightarrow null, let fcond.code = forward(COD)$ $C_3 = EOISIde \Rightarrow null,$ Reverse and EOISInt \Rightarrow trans.skip.if.not.in(P), Reverse and EOISINt \Rightarrow trans.skip.if.PowoDwo(L) = P)	[R6.2]
	e_0 $C = FOIsSkp > trans_turn to(Follow) = I = Foisskp > trans_turn to(Follow) = Foisskp > trans_turn to(Follow) = I = Foisskp > trans_turn to(Follow) = I = Foisskp > trans_turn to(Follow) = Foisskp > trans_turn to(F$	
	C_5^4 = Reverse \Rightarrow null, e_1	
	$C_6 = \text{NoEndCo} \Rightarrow \text{null}, \text{trans.jump.to}(\text{econd.code})$ $C_7 = \text{NoFalse} \Rightarrow \text{null}, \text{fix.here}(\text{fcond.code})$	
	$C_8 = E2IsJmp > null, e_2$	
	$C_0 = \text{NoEndCo} \Rightarrow \text{null, fix.here(econd.code)}$ EOIsDes = e_=e(P).dest.(i)A	
	$EOISIde = e_0 = i$	
	$EOIsInt = e_0 = trans.skip.if.in(P)$	
	$EOISDya = e_{OISINT} = EOISINT or EOISDya$	
	EllsJmp = e_1 =trans.jump.to(i ₁)	
	$E2IsJmp = e_2^{-trans.jump.to(i_2^{-t})}$	
	$e_{2}=\{\}$	

```
Reverse = E2IsNul and ElIsJmp
NoFalse = Reverse or E2IsJmp
NoEndCo = E2IsNul or E2IsJmp or WillJump(e<sub>1</sub>)
JumpRut = Reverse > trans.jump.if.true, trans.jump.if.false
FalseCo = Reverse > i<sub>1</sub>, E2IsJmp > i<sub>2</sub>, fcond.code
HasCont(e)=TRUE if e contains continuations which will jump
HasCont(e)=FALSE otherwise
```

when	i:COD	Fix(Xi.e)	=>	<pre>[{ let i = here(COD); e } [rename i=>restart.code</pre>	[R6.3]
when	e _l :TEM	e(P ₀ , e ₁ , P ₁)A	 =>	<pre>[{ let ntry.code = forward(DOM(e_1 let exit.code = forward(COD) let skip.code = forward(COD) trans.jump.to(skip.code) trans.entry(ntry.code, node) e_1 trans.exit(exit.code, node) fix.here(skip.code) e(P_0, ntry.code, P_1)A] }</pre>)) [R6.4]
when	i:TEM	Fix(Xi.e)	=>	[ntry.code/i]e	[R6.5]
when	e:TEM	e(P)A	=>	trans.call(e, P)A	[R6.6]
when	i:REG	i?d	=>	trans.skip.if.in(i, d)	[R6.7]

$$e \Rightarrow$$
 check.if.in(i, d) [R6.8]
when (e = i?d and not i:REG) or $e = i??d$

when
$$e_1 \pm i$$
 $e(P).cont.(e_1)A$ $| \Rightarrow |$ fix.here(continue)A
 $| e(P).cont.(continue)A$ $| R6.9]$
 $| e_1$
 $| e_1$

 $e(P_0, e_0([e_1/e_2], P_1)A | \Rightarrow) | e(P_0, e_0([ntry.code/e_2], P_1)A [R6.12]*$ | | where except for the last statement | | the same as R6.11 or R6.21 when e1:TEM or e1:THU l_e₃ is the same as R6.11 or R6.21 where $C_1 = \text{let } c = E$ $C_2 = \text{for inx=1 to s-1 do } C_f$ $C_3 = \text{unless s=0 do } C_u$ $C_4 = \text{freevec(c)}$ $e_i: D \text{ for i=1 to n}$ $(C_1; C_2; C_3; C_4)$ [R6.13] [{ e₁; fix.with(c!inx,r) } if DCTEM
 [{ fix.here(c!inx); e₁ } if DCCOD
 [c!inx := e₁ otherwise otherwise $C_{u} = \{ e_{1}; fix.with(c!s,r) \}$ if DCTEM $C_{u} = \{ fix.here(c!s); e_{n} \}$ if DCCOD $| c!s := e_{n}$ otherwise otherwise s=>!node.vec rename c=>DC[COD+TEM]→code.vec, cons.vec E=>DC[COD+TEM]→forward.vec(s, D), newvec(s) r=destination of e, e₁:D* and not DCCOD \Rightarrow { $C_1; C_2; C_3; C_5; C_4$ } [R6.14] when C_1^1 , C_2 , C_3 and C_4 are inherited from the transformation of e_1 as a result of R6.13 where $C_5 = e_0(P_0, \text{ cons.vec}, P_1)A$ $e_{0}(P_{0}, e_{1}, P_{1})A \mid = C_{1} \quad (C_{1} + C_{1} + C_{1} + C_{1} + C_{2}; C_{3} + C_{3}; C_{3} + C_{3}; C_{3}; C_{3} + C_{3}; C_$ [R6.15] when $e_1:COD^*$ ________ where C_1^1 , C_2 , C_3 and C_4 same as R6.14 rename s=>skip.code Fix($\lambda < i_1, \dots, i_n > \{ C_0; e_1 \}$) => { $C_1; C_0; C_2; C_3; C_5; C_4 \}$ when $e_1:COD^*$ and $e_1 = \langle e_1, \dots, e_n \rangle$ where $C_5 = e(P_0, code.vec, P_1)A$ C_1, C_2, C_3 and C_4 same as R6.14 rename $i_1 = \rangle code.vec!inx, i_n = \rangle code.vec!!node.vec$ [R6.16] when where rename when e:COD* nve or evn => C;e [R6.17] where C = null if n=1 C = trans.jump.to(code.vec!n) otherwise

B.7 Environment Analysis

$$e_0(P_0, e, P_1)A \mid => \mid e_0(P_0, P_1)A \quad [R7.1]$$
when e:ENV and $e_{\pm i}$

when i:ENV $i([e_1/e_2]) \implies declare(DOM(e_1), e_1, e_2)$ [R7.2]

when i: ENV $i(P)A \implies look.up(P)A$ [R7.4]

when i: ENV let
$$v(P_0, i, P_1)A \implies$$
 let $v(P_0, P_1)A$ [R7.5]

when I:ENV
$$e(P_0, i, P_1)A \Rightarrow e(P_0, P_1)A$$
 [R7.6]

when i:ENV i(P) => {
$$C_1; C_2$$
 }
where $P = [e_1/e_2], \dots, [e_3/e_4]$ [R7.7]

$$C_1$$
 = for inx=1 to s-1 do declare(e₂, e₁)
 C_2 = unless s=0 do declare(e₄, e₃)
rename s=>!node.vec

for I=1 to E
$$| \Rightarrow |$$
 for I=1 to E [R7.9]
do e(P)A.dest.(i) | do e(P)A

when i:ENV { C_0 ; i; C_1 } => { C_0 ; C_1 } [R7.10]

when dCENV $e(P)A.dest.(?:d) \implies e(P)A$ [R7.11]

1

B.8 Optimising Continuations let v(D).cont.(I)A be let v(D).cont.(I, jump)A be switchon E into | | switchon E into $\{ case [s]: \{ C_0; C_1; C_2 \} | = > | \{ case [s]: \{ C_0; C_3; C_2 \} \\ endcase |$ | endcase [R8.1] } $C_{1} = e(P).cont.(I)A \text{ or } C_{1} = e(P, I)A$ e is not one of: fix.here, trans.load, when trans.entry, trans.thunk.entry, trans.exit, trans.thunk.exit, trans.jump.if.true or trans.jump.if.false. where $C_3 = e(P)$.cont.(I, boo)A or (depending on C_1) $C_3 = e(P, I, boo)A$ boo= true.jump if C2:COD boo= jump otherwise [R8.2] $C_1 = e(P).cont.(I)A \text{ or } C_1 = e(P, I)A$ when and (fixed or fixing or global) and I_1 is one of: fix.here, trans.exit or trans.thunk.exit. $C_2 = e(P) \cdot cont.(I_1 + boo) A \text{ or } (depending on C_1) C_2 = o(P_1)$ = e(P).cont.(I, boo)A or (depending on C_1) $C_3=e(P, I, boo)A$ where fixed = $I=I_0$ and E=here(P)fixing= $I=I_0$ and E=forward(P)global= I free in the procedure where this transformation is applied. = true.jump if (fixing and C₂:COD) or fixed or global boo = false.jump otherwise boo or when C_1 is in the context of: for $I_2 = e_1$ to e_3 do { fix.here(I_0); C_0 ; C_1 ; C_2 } $I_0 = e!I_2$ and $I = e!(I_2+1)$ C_3 as before where = true.jump if C₂:COD, boo = false.jump otherwise $\{ C_1; C_2; C_3 \} \Rightarrow \{ C_1; C_3 \}$ when C_2 trans.jump.to(i, false.jump) [R8.3] [R8.4] $J_{0} = \text{trans.jump.to}$ $J_{1} = \text{trans.jump.if.false or } J_{1} = \text{trans.jump.if true}$ $E_{2} = \text{jump or } E_{2} = \text{not jump or } E_{2} = \text{true.jump}$ $J_{2} = \text{reverse of } J_{1}$ $E_{1} = \text{the result of } R8.1 \text{ or } R8.2$ when where

when
$$C_{1} = [I/e_{1}]C_{2}^{2}$$
 is to $e_{1}-1$ is the formula in the second second

B.9 Optimising Transformations

test E=max.reg then { let old.env = this.env let D = trans.dump(R) С => | $[R/R+1]{D/R}C$ [R9.1] reset(old.env) } or { let nxt = next(R)[nxt/R+1]C } rename D=>dmp.loc when $C = \{C_1; C_2; C_3\}$ and $C_2 = e(P)A.dest.(R+1)$ R = reg or R = first.regwhere $E = weight^{[s]} \text{ if } C_2 = e(P_0, [s], P_1)A.dest.(R+1) (P contains an [s])$ $E = P_1 \text{ otherwise}$ { let old.env = this.env { let old.env = this.env {¹let old.env = this.env C₁ C₂ reset(old.env) C₂ reset(old.env) => [R9.2] } } reset(old.env) } trans.load(E, I).dest.(I) | => | make.type(I, E) [R9.3] when E <u>+</u> domain.of(I) trans.load(E, I).dest.(I) $| \Rightarrow | \{\}$ [R9.4] when E = domain.of(I) $E_0(\text{domain.of}(E), E, P)A \mid \Rightarrow \mid E_0(\text{domain.of}(xx), xx)A \in E_1 \mid B_0(\text{domain.of}(xx), xx)A$ [R9.5] when E¥I

- 199 -

B.10 BCPL

Every [s] => replaced by its appropriate tag' or 'selector'	[RA.1]
Every 'curly' valuator v => respectively replaced by and every domain d trans.v and Dd	[RA.2]
$ \begin{cases} c_0 \\ e_0 \\ c_1 \\ c_1 \\ e_1 \\ e_2 \\ e_1 \\ e_2 \\ e_1 \\ e_2 \\ e_1 \\ e_1 \\ e_1 \\ e_2 \\ e_1 \\ e_1 \\ e_1 \\ e_2 \\ e_1 \\ e_1 \\ e_1 \\ e_1 \\ e_2 \\ e_1 \\ e_1 \\ e_1 \\ e_2 \\ e_1 \\ e$	[RA.3]
$ \begin{cases} c_0 \\ e_0 \geqslant e_1, \{\} \\ c_1 \\ e_1 \\ e_1$	[RA.4]
$ \begin{cases} C_{0} \\ e_{0} \\ C_{1} \\ c$	[RA.5]
nte or etn => pn^e where pn is a 'selector'	[RA.6]
<pre>let v(P) be C => let v(P)=valof C when not v(P):COD</pre>	[RA.7]
and for every case inside C above:	
case I: E; endcase => case I: resultis E	[RA.8]

 $\#[s_1 \dots s_n] \implies size^{[s_1 \dots s_n]}$ [RA.9]

when
$$e_1$$
: INT $e_0(P_0, e_1, P_1)A = \sum_{i=1}^{n} e_0(P_0, e_2, P_1)A$
 $\sum_{i=1}^{n} \sum_{i=1}^{n} e_0(P_0, e_2, P_1)A$

[RA.10]

B.11 Cross Reference

Rule Def.|Use

Normalisation 130, 43, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95, 99, 117, 124, 137, 145, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 228, R1.1 29 130. 1229, 230, 231, 232, 233, 234, 235 R1.2 30 161, 65, 66, 137, 145, 221, 222, 223, 235 R1.3 30 1117, 213, 215, 217, 233 R1.4 80 199, 213, 217, 219 R1.5 |not used 80 State Analysis R2.1 34 136 R2.2 34 136, 61, 65, 66, 73, 93, 94, 95 R2.3 136 34 R2.4 34 136 R2.5 35 136 R2.6 35 Inot used R2.7 37 136, 61, 66, 73, 93, 94, 95 R2.8 143, 65, 92, 93 40 R2.9 143, 58, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95 40 R2.10 41 143 R2.11 58 161, 62, 65, 66, 73, 89, 92, 93, 94, 95 R2.12 59 161, 65, 66 R2.13 60 161, 66 R2.14 60 161, 66, 73, 93, 94, 95 R2.15 61 166 Syntactic Transformations 145, 61, 62, 65, 66, 73, 92, 93, 99, 117, 137, 145, 213, 218, 227, R3.1 44 1233, 234, 235 145, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95, 99, 117, 124, 137, 145, 1213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 227, 228, 229, R3.2 44 1230, 231, 232, 233, 234, 235 145, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95, 117, 137, 145, 213, 215, R3.3 44 1217, 233 R3.4 44 1137 145, 65 R3.5 44 R3.6 70 173, 93, 95, 135 R3.7 116 |117, 124, 215, 229, 230, 233, 234 R3.8 136 |137

Splitting Continuations 100 |101, 122, 125, 145, 216, 218, 221, 222, 223, 227, 228, 229, 230, 233. R4.1 1234 R4.2 100 |101, 121, 125, 145, 213, 214, 215, 216, 217, 218, 219, 220, 221, 227, 1228, 229, 230, 231, 232, 233, 234, 235 R4.3 101 | 122, 145, 218, 227, 233, 234, 235 101 |125, 145, 218, 219, 220, 221, 222, 223, 227, 228, 229, 231, 232, 233, R4.4 1234, 235 R4.5 102 |101, 121, 213 102 |101, 121, 122, 125, 213, 214, 215, 216, 217, 222, 223, 229, 230, 234 R4.6 R4.7 125 |129, 230, 234 Destination Analysis 152, 61, 62, 66, 73, 93, 140, 235 R5.1 47 152, 61, 62, 65, 73, 89, 92, 93, 103, 121, 213, 214, 215, 216, 217 R5.2 47 152, 61, 62, 66, 73, 93, 94, 95, 103, 122, 138, 140, 141, 142, 149, R5.3 48 150, 151, 216, 218, 221, 222, 223, 227, 228, 229, 233, 235 48 152, 61, 62, 65, 66, 73, 89, 92, 93, 94, 95, 138, 140, 141, 150 R5.4 R5.5 49 162 R5.6 50 161, 62, 65, 66, 140 161, 66, 100, 141, 150, 151, 216, 228, 229 R5.7 50 173, 94, 95, 138, 141, 142, 150, 151, 221, 222, 223, 235 R5.8 71 R5.9 72 173, 94, 95, 142, 151, 221, 222, 223, 235 173, 94, 95, 138, 141, 142, 150, 151, 221, 222, 223, 235 R5.10 72 R5.11 73 193, 95, 141 R5.12 102 |103, 122, 149, 218, 227, 233, 234, 235 R5.13 102 | 103, 149, 150, 151, 219, 220, 221, 223, 228, 229, 230, 232, 233, 235 R5.14 102 |103, 121, 128, 149, 150, 151, 213, 214, 215, 216, 217, 218, 219, 220, |221, 227, 228, 229, 230, 231, 232, 233, 234, 235 R5.15 102 | 128, 150, 214, 215, 216, 218, 220, 221, 227, 231, 234, 235 R5.16 126 |128, 230 R5.17 126 |128, 234 R5.18 127 |128, 233, 234, 235 R5.19 127 |229 R5.20 138 |139, 142 R5.21 145 |144, 151 Continuation Analysis 93, 109, 110, 111, 121, 122, 129, 149, 150, 151, 213, 214, R6.1 53 156, 65, 1215, 216, 217, 218, 219, 221, 222, 223, 227, 228, 229, 230, 233, 234 156, 65, 66, 81, 89, 92, 93, 94, 95, 108, 109, 110, 111, 121, 129, R6.2 54 141, 150, 213, 214, 215, 216, 217, 219, 221, 227, 228, 229, 234 156, 65, 93, 110, 213, 217 R6.3 55 181, 94, 95, 142 R6.4 75 R6.5 76 1223 181, 93, 95, 141, 150, 215, 216, 221, 227, 235 R6.6 76 181, 92, 93, 94, 95, 109, 110, 111, 121, 129, 141, 150, 213, 214, 215, R6.7 78 1216, 217, 219, 221, 227, 228, 229, 234 R6.8 80 189 105 |109, 110, 111, 121, 129, 149, 150, 213, 214, 215, 216, 217, 218, 219, R6.9 1220, 221, 227, 228, 229, 230, 231, 232, 234, 235 R6.10 106 |109, 110, 111, 121, 122, 129, 149, 150, 151, 213, 214, 215, 216, 217, 1218, 219, 220, 221, 222, 223, 227, 228, 229, 230, 231, 232, 233, 2³⁴,
1235 R6.11 106 |151, 221, 222, 223, 235 R6.12 106 |146, 151 R6.13 118 |121, 122, 215, 229, 233 R6.14 119 |121 R6.15 119 |121, 229 R6.16 119 |122, 215, 233 R6.17 119 |122, 215, 233 R6.18 129 |230, 234 R6.19 139 |141, 144 R6.20 139 |142 R6.21 146 |144, 150, 151 Environment Analysis 186, 92, 94, 95, 110, 111, 142, 151, 214, 220, 221, 222, 223 R7.1 83 186, 92, 94, 95, 110, 111, 121, 122, 142, 151, 213, 214, 215, 217, R7.2 83 1220, 221, 222, 223, 233 R7.3 1121, 122, 213, 215, 217, 233 83 R7.4 186, 93, 110, 121, 140, 149, 216, 218, 227 84 186, 92, 93, 109, 110, 121, 122, 140, 149, 213, 218, 227, 233, 234, R7.5 85 1235 R7.6 89, 92, 93, 94, 95, 109, 110, 111, 121, 122, 131, 140, 141, 149, 85 186, 1150, 213, 214, 215, 216, 217, 218, 219, 220, 221, 227, 228, 229, 230, 1231, 232, 233, 234, 235 R7.7 120 |122, 215, 233 R7.8 130 |232, 235 R7.9 130 |131, 234 R7.10 131 1234 R7.11 131 |234, 235 Optimising Continuations 107 109, 110, 111, 121, 122, 149, 150, 151, 213, 214, 215, 216, 217, 218, R8.1 1219, 220, 221, 222, 223, 227, 228, 229, 230, 231, 232, 233, 234, 235 107 1109, 110, 111, 121, 122, 141, 142, 149, 150, 151, 213, 214, 215, 216, R8.2 1217, 218, 219, 220, 221, 222, 223, 227, 228, 229, 230, 231, 232, 233, 1234, 235 R8.3 108 |151 R8.4 109 |217 R8.5 120 |121, 122, 215, 229, 233 Optimising Transformations 193, 95, 140, 141, 149, 150, 216, 217, 219, 221, 227, 231 R9.1 86 R9.2 87 1142, 151 R9.3 88 |not used R9.4 88 1216 R9.5 88 Inot used R9.6 140 |142, 151 BCPL 165, 66, 89, 92, 93, 94, 95, 109, 110, 111, 121, 122, 140, 141, 142, 149, 150, 151, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, RA.1 63 1227, 228, 229, 230, 231, 232, 233, 234, 235 165, 66, 89, 92, 93, 94, 95, 109, 110, 111, 121, 122, 140, 141, 142, RA.2 63 149, 150, 151, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,

 |227, 228, 229, 230, 231, 232, 233, 234, 235

 RA.3
 88
 |89

 RA.4
 88
 |not used

 RA.5
 89
 |not used

 RA.6
 120
 |122, 215, 233

 RA.7
 120
 |122

 RA.8
 120
 |122

 RA.9
 131
 |234

 RA.10
 132
 |229, 234

APPENDIX C

Operators

C.1 Source d:D=Any Domain

01: $\cdot \neq \cdot :[[T \times D \times D] \neq D]$ This is the conditional function. An expression t $\neq d_1, d_2$ will take the value d_1 when t is True, d_2 when t is False, Top_D when t is Top_T and Bot_D when t is Bot_T. 02: $\cdot = \rangle \cdot :[[[D \times [D \neq D_1]] \neq D_1]]$ $f:[D \neq D_1]$ x:D

d => $x \cdot fx$ is the same as $(x \cdot fx)d$ This operator, which reads as 'produce', is the reverse of application, so that we can read equations from left to right.

03: $\bullet \cdot [[[D \ge D_1] \times [D_1 \ge D_2]] \ge [D \ge D_2]]$ $f:[D \ge D_1]$ $g:[D_1 \ge D_2]$ $(f \bullet g)d^2 = g(fd)$ This is the reversed form of the composition operator.

04: $\cdot \pm \cdot :[[[D_1 \Rightarrow D] \times [D \Rightarrow [D_1 \Rightarrow D_2]]] \Rightarrow [D_1 \Rightarrow D_2]]$ Not DCSTA f: $[D_1 \Rightarrow D]$ g: $[D \Rightarrow [D_1 \Rightarrow D_2]]$ (f $\pm g$)d₁ = g(fd_1)d₁ This operator will normally be used for expressions without side effects.

05: $\begin{array}{c} \bullet_{1}^{\bullet} :: [[D_{1} \rightarrow [D \times D_{2}]] \times [D \rightarrow [D_{2} \rightarrow D_{3}]]] \rightarrow [D_{1} \rightarrow D_{3}] \\ \text{Not DCSTA} \\ f: [D_{1} \rightarrow [D \times D_{2}]] \\ g: [D \rightarrow [D_{2} \rightarrow D_{3}]] \\ (f \stackrel{\star}{=} g)d_{1} = gdd_{2} \text{ where } \langle d, d_{2} \rangle = fd_{1} \\ \text{Reversed form of the Star operator used by C.Strachey in the semantic equation for the while-loop.} \end{array}$

```
06:
.|.:[D_1 + ... + D_n]
i:N and 1 <= i <= n
d|D is the projection of d into the subdomain D_i of [D_1 + \cdots + D_n]
07:
.In.
d:D, i:N and l \leq i \leq n
d In [[D_1 + \dots + D_n] is the injection of d into [D_1 + \dots + D_n]
08:
. .
Semantic Context
 \begin{array}{c} \bullet \bullet : \left[ \left[ \left[ D_{1} \times \cdots \times D_{n} \right] \times N \right] \neq D_{i} \right] \\ d = \langle D_{1}, \cdots, d_{i}, \cdots, d_{n} \rangle : \left[ D_{1} \times \cdots \times D_{i} \times \cdots \times D_{n} \right] \\ i : N \text{ and } 1 \langle = i \rangle = n \end{array} 
d \forall i = d_i
Syntactic Context
.*.:[N \times S] \rightarrow Si]
[s]=[s1 ...sn]:S
i:N and 1 \leq i \leq n
i \mathbf{t}[s] = [Si]
So that t is used to extract individual components of tuples or node-
offspring.
09:
.+.
d+i = \langle d(i+1), ..., d_n \rangle
Operator used to remove elements from tuples.
010:
.%.
d%d_1 = \langle D_1, \dots, d_i, d_j, \dots, d_n \rangle
Operator used to concatenate tuples.
011:
.?.
\begin{array}{c} d: [D_1 + \cdots + D_n] \\ i: N \text{ and } 1 \leq i \leq n \end{array}
d?D. is True if d is in the D<sub>i</sub> subdomain of [D_1 + \cdots + D_n], otherwise is
False
```

012: .??. No semantic difference with '?'. Used by the transformation process to distinguish between compile and run-time type checking.

- 207 -

O13: .o.[[D x D] → T] Where o is one of: =, Eq or Ne; i.e: the first two are equivalent forms of equality and the third one is the inequality operator.

014: .o.:[[N x N] → T] Where o is one of Lt, Le, Gt, Ge; i.e: these are the relational operators on integers.

015: $\begin{bmatrix} / \\]:[[D x D_1 x D_2] \neq D] \\ d:D=[D_1 x \dots x D_i x \dots x D_n] \\ i:N and 1 \leq i \leq n \\ r:D_1 \\ d[d_1/d_2] = \langle d \forall 1, \dots, d_1 \forall (i-1), r, d_1 \forall (i+1), \dots \rangle \\ |- \\ | r = (\lambda x. x=d_1 \neq d_2, (d_1 \forall i)x) \text{ if } D_i = [D_1 \neq D_2] \\ where \leq | \\ | r = d_2 \text{ if } d_1 \text{ is a selector and } d_1 = d \forall i \\ |- \end{bmatrix}$

This is the postfix operator to create new environments and states. (the concrete notation dSEL, where SEL has been defined as a semantic selector (==), is equivalent to SELd.)

016: Cond: $[[D \times D] \rightarrow T \rightarrow D]$ Cond<d, $d_1 > = \lambda t \cdot t?T \rightarrow (t \rightarrow d, d_1)$, $(D=COD \rightarrow Wrong, Bot_D)$. Wrong: COD

017:

SCond No semantic difference with Cond. Used by the transformation process to distinguish between compile and run-time type checking.

018: Fix: $[D \ge D]$ Fix = λ F.|_|_nFⁿ(Bot), Fix(f) is the minimal fixed point of f; so Fix(f) = f(Fix(f)).

```
019:

Strict: [[D_1 \rightarrow D] \rightarrow [D_1 \rightarrow D]]

(Strict f)d<sub>1</sub> = Top<sub>D</sub>, Bot<sub>D</sub> if d<sub>1</sub>=Top, Bot<sub>D</sub>, otherwise f(x).
```

C.2 Target

020:

.!. Vector Application Provides a way of selecting an element of a vector. A vector is any set of consecutive storage cells. Such a set is introduced by the BCPL function <u>newvec</u> and the ISL primitive functions <u>open.node</u> and <u>forward.vec</u>. The basic form of a vector application is $E_1!E_2$. !E is the same as E!O.

021:

•• Selector Application A selector application is the process of applying a <u>selector</u> to perform a byte extraction on a given data structure. Selectors are predefined by the ISL interface, they are: <u>type</u>, <u>pl</u>, <u>p2</u> ... and <u>weight</u>.

Priority of operators:

The top of the list is the highest priority. 1. name, constant, bracketed expression, valof 2. function application. 3. monadic operators: ! not 4. ! 5. ^ 6. + -7. = Eq Ne Ls Le Gr Ge 8. conditional expression

APPENDIX D

Stoy's Final Example

```
Snapshot D.1: Stoy's Final Example. Original Specification
 Syntactic Categories
 i:Ide.
                                                                                   identifiers
 c:Com.
                                                                                   commands
 l:Lco.
                                                                                   labeled com.
 e:Exp.
                                                                                   expressions
 o:Ops.
                                                                                   binary operators
 n:Nml.
                                                                                   numerals
 q:Str.
                                                                                   strings
 Syntax
c ::= Dummy | If e Then c<sub>1</sub> Else c<sub>2</sub> | c<sub>1</sub>;c<sub>2</sub> | While e Do c<sub>1</sub> |
Let i=e In c<sub>1</sub> | Let i:=e In c<sub>1</sub> | Goto e | Begin 1<sub>1</sub>; ...1<sub>2</sub> End |
        Call e | Call e(e_1) | Resultis e | Break | Return | e:=e_1^2 |
        c, Repeatwhile e
1 ::= i:c
e ::= i | n | q | e_1 o e_2 | If e_1 Then e_2 Else e_3 | Let i=e_1 In e_2 |
Let i:=e_1 In e_2 | e_1(e_2) | Fn i.e_1 | Rt c | Fn i. Is c | Valof c |
Rec i Fn i.e_1 | Rec i Rt c
o ::= + | - | * | / | / | | / | > | < | = | <= | >= | #
Semantic Domains
   T = [{ TRUE } + { FALSE }].
                                                                                  truth values
   Ν.
                                                                                  integers
   Q.
                                                                                  quotations
1:L.
                                                                                  locations
s:S.
                                                                                  machine states
   Α.
                                                                                  answers
c:C=[S \rightarrow A].
                                                                                  command cont.
d:D=[T + N + Q + C + F + P + G + L].
                                                                                  denoted values
v: V = [T + N + Q + C + F + P + G].
                                                                                  expression values
e:E=D.
                                                                                  denotations
k:K=[E \rightarrow C].
                                                                                  expression cont.
w:W=[K \ge C].
                                                                                  expression closures
f:F=[D \rightarrow W].
                                                                                  abstractions
  P=[D \ge G].
                                                                                  routines (1 param.)
  G=[C \rightarrow C].
                                                                                  command closures
p:U=[[Ide \rightarrow D] \times K \times C \times C].
                                                                                  environments
Semantic Domains of 'Interest'
  ENV=U.
                                                                                 environments
  REG=E.
                                                                                 registered values
  TEM = [F + P + G].
                                                                                 templates
  STA=S.
                                                                                 states
  QUO.
                                                                                 quotations
```

Snapshot D.1 (continued)	
$\frac{\text{Semantic Primitives (undefined)}}{N:[Nml > N]}$	
$\begin{array}{l} Q:[Str \neq Q].\\ O:[Ops \neq V \neq V \neq W]. \end{array}$	
Assign: $[L \rightarrow V \rightarrow C \rightarrow C]$.	
LVal: $[E \rightarrow [L \rightarrow C] \rightarrow C]$. RVal: $[E \rightarrow [V \rightarrow C] \rightarrow C]$.	
Wrong:C.	
Semantic Selectors	
$pRES = = p \forall 2.$	
$pRET = = p \forall 3 \cdot pREK = = p \forall 4 \cdot pREK = p \forall 4 \cdot $	
point port.	
Semantic Function for Commands $C:[Com \ge U \ge G]$.	(D.1.1)
C[Dummy]pc=	(D 1 2)
с.	(D.1.2)
C[If e Then c_1 Else c_2]pc= R[e]p{ $v.Cond < C[c_1]pc, C[c_2]pc > v$ }.	(D.1.3)
C[c ₁ ;c ₂]pc= C[c ₁ fp{C[c ₂]pc}.	(D.1.4)
$C[While e Do c_1]pc =$ Fix { $bc' \in \{B[e p'] \}$ { $bv \in Cond \leq C[c_1 p'c' + c \geq v\}$ }	
Where $p'=p[c/BRK]$.	(D.1.5)
C[Let i=e In c ₁]pc=	
$E[e]p{re.C[c_1](p[e In D/[i]])c}.$	(D.1.6)
$C[Let i:=e In c_1]pc=$	(D 1 7)
$\mathbf{R}[\mathbf{e}]\mathbf{p}\{\mathbf{x}\mathbf{v},\mathbf{L}\mathbf{v}\mathbf{a}\mathbf{i}\{\mathbf{v} \text{ in } \mathbf{E}\}\{\mathbf{x}\mathbf{i},\mathbf{c}[\mathbf{c}_1](\mathbf{p}[\mathbf{i} \text{ in } \mathbf{D}/[\mathbf{i}]])\mathbf{c}\}\}$	(D.1.7)
$C[Goto e]pc= \\ R[e]p{xv.v?C>v C, Wrong}.$	(D.1.8)
$C[Begin 1_1; \dots 1_2 End]pc=$	
Fix(X < c',, c''). $\{ < C(2 \neq [1, 1) p' c'',, C(2 \neq [1, 1) p' c) \}$	
Where $p'=p[c' \ln D/1 \neq [1_1]] \dots [c' \ln D/1 \neq [1_2]] \}) \neq 1$.	(D.1.9)
C[Call e]pc=	(D 1 10)
K[e]p{xv.v(G+{v G}C, wrong).	(D.1.10)
$C[Call e(e_1)]pc= \\ R[e]p{xv.v?P}E[e_1]p{xe'.(v P)e'c}, Wrong}.$	(D.1.11)
C[Resultis e]pc=	(1 1 12)
$K[e]p{xv.pRES{v In E}}.$	(D.1.12)

-	211	-

Snapshot D.1 (continued)	
C[Break]pc= pBRK.	(D.1.13)
C[Return]pc= pRET.	(D.1.14)
$C[c_1 Repeatwhile e]pc=Fix{c'.{C[c_1]p'{R[e]p'{}v.Cond{c',c>v}}}Where p'=p[c/BRK]}.$	(D.1.15)
C[e:=e ₁]pc= L[e]p{\l.R[e ₁]p{\v'.Assign lv'c}}.	(D.1.16)
Semantic Functions for Expressions $L: [Exp \ge U \ge [L \ge C] \ge C].$	(D.1.17)
$L[e]pk:[L \neq C] = E[e]p{e.LVal ek}.$	(D.1.18)
$\mathbf{R}: [\operatorname{Exp} \neq \mathbf{U} \neq [\mathbf{V} \neq \mathbf{C}] \neq \mathbf{C}].$	(D.1.19)
$R[e]pk:[V \rightarrow C] = E[e]p{xe.RVal ek}.$	(D.1.20)
$\mathbf{E}: [\mathrm{Exp} \neq \mathrm{U} \neq \mathrm{W}].$	(D.1.21)
<pre>E[i]pk= k{p[i]}.</pre>	(D.1.22)
$E[n]pk= k\{N[n] In E\}.$	(D.1.23)
E[q]pk= k{Q[q] In E}.	(D.1.24)
$E[e_1 \circ e_2]pk = R[e_1]p{\lambda v \cdot R[e_2]p{\lambda v' \cdot 0[o]vv'k}}.$	(D.1.25)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(D.1.26)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(D.1.27)
<pre>E[Let i:=e In e2]pk= R[e1]p{xv.LVa1{v In E}{1.E[e2](p[1 In D/[i]])k}}.</pre>	(D.1.28)
E[e ₁ (e ₂)]pk= R[e ₁]p{xv.E[e ₂]p{xe'.v?F→(v F)e'k,Wrong}}.	(D.1.29)
$E[Fn i.e_1]pk= k{(\lambda dk.E[e_1](p[d/[i]])k) In E}.$	(D.1.30)

i i i i i i i i i i i i i i i i i i i
(D.1.31)
(D.1.32)
(D.1.33)
(D.1.34)
(D.1.35)

Snapshot D.2: Stoy's Final Example. BCPL let trans.C(node).cont.(continue, jump) be switchon type node into by R1.1, R3.1, R4.5, R6.10, R7.5, R8.1, RA.1 (D.2.1){ case T..Dummy: trans.jump.to(continue, jump); endcase by R1.1, R6.1, R6.10, R8.1, RA.1 (D.2.2)case N3..ConditionalCom: {0 let continuel = forward(D..COD) trans.R(pl^node).cont.(continuel, false.jump).dest.(first.reg) fix.here(continuel) trans.skip.if.in(first.reg, D..T) trans.jump.to(Wrong, true.jump) { let fcond.code = forward(D..COD) trans.jump.if.false(first.reg, fcond.code) trans.C(p2^node).cont.(continue, true.jump) fix.here(fcond.code) trans.C(p3^node).cont.(continue, jump) }0; endcase by R1.1, R1.4, R3.2/3 times, R4.2, R4.6/twice, R5.2, R5.14, R6.1 R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice R8.2/twice, RA.1/4 times, RA.2/6 times (D.2.3)case N2..Sequence: { let continuel = forward(D..COD) trans.C(pl^node).cont.(continuel, false.jump) fix.here(continue1) trans.C(p2^node).cont.(continue, jump) }; endcase by R1.1, R3.2/twice, R4.6/twice, R6.9, R6.10, R7.6/twice, R8.1, R8.2 RA.1/3 times, RA.2/3 times (D.2.4)case N2...While: { let old.env = this.env let restart.code = here(D..COD) declare(D..COD, continue, BRK) { let continuel = forward(D..COD) trans.R(pl^node).cont.(continuel, false.jump).dest.(first.reg) fix.here(continuel) trans.skip.if.in(first.reg, D..T) trans.jump.to(Wrong, true.jump) trans.jump.if.false(first.reg, continue) trans.C(p2^node).cont.(restart.code, true.jump) } reset(old.env) }; endcase by R1.1, R1.3, R1.4, R3.2/4 times, R3.3, R4.2, R4.6, R5.2, R5.14 R6.1/twice, R6.2/twice, R6.3, R6.7, R6.9, R6.10/twice, R7.2, R7.3 R7.6/twice, R8.2/3 times, RA.1/3 times, RA.2/6 times (D.2.5)

- 213 -

	Snapshot D.2 (continued)
case	N3DefinitionByDenotationCom:
{0]	<pre>let continuel = forward(DCOD)</pre>
	<pre>trans.E(p2^node).cont.(continuel, false.jump).dest.(first.reg)</pre>
	fix.here(continuel)
	{ let old.env = this.env
	<pre>declare(domain.of(first.reg), first.reg, pl^node)</pre>
	<pre>trans.C(p3^node).cont.(continue, jump)</pre>
	reset(old.env)
}0;	endcase
by	R1.1, R3.2/3 times, R4.2, R4.6, R5.2, R5.14, R6.9, R6.10, R7.1, R7.2
R7.	6, R8.1, R8.2, RA.1/4 times, RA.2/3 times (D.2.6)
case	N3InitialisedDefinitionCom:
{0]	<pre>let continue2 = forward(DCOD)</pre>
	trans.R(p2^node).cont.(continue2, false.jump).dest.(first.reg)
	fix.here(continue2)
	{ let continuel = forward(DCOD)
	LVal(first.reg).cont.(continuel, false.jump).dest.(first.reg)
	fix.here(continuel)
	{ let old.env = this.env
	<pre>declare(domain.of(first.reg), first.reg, pl^node)</pre>
	<pre>trans.C(p3^node).cont.(continue, jump)</pre>
	reset(old.env)
}0;	endcase
by	R1.1, R3.2/4 times, R4.2/twice, R4.6, R5.2, R5.14/twice, R5.15
R6.	9/twice, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2/twice, RA.1/4 times
RA.	2/4 times (D.2.7)
case	N1Goto:
{ 1	et continuel = forward(DCOD)
t	rans.R(pl^node).cont.(continuel, false.jump).dest.(first.reg)
f	ix.here(continuel)
t	rans.skip.if.in(first.reg, DCOD)
t	rans.jump.to(Wrong, true.jump)
t	rans.jump.to(first.reg, true.jump)
}; (endcase
by	R1.1, R3.2, R4.2, R5.2, R5.14, R6.1/twice, R6.2, R6.7, R6.9, R7.6
R8.	2/3 times, RA.1/twice, RA.2/3 times (D.2.8

```
Snapshot D.2 (continued)
 case NX..Block:
   { let node.vec = open.node(node)
     { let old.env = this.env
      let code.vec = forward.vec(!node.vec, D..COD)
      for inx=1 to !node.vec
      do declare(D..COD, code.vec!inx, pl^node.vec!inx)
      for inx=1 to !node.vec-1
      do { fix.here(code.vec!inx)
           trans.C(p2^node.vec!inx).cont.(code.vec!(inx+1), false.jump)
         }
      unless !node.vec=0
      do { fix.here(code.vec!!node.vec)
           trans.C(p2^node.vec!!node.vec).cont.(continue, jump)
         }
      freevec(code.vec)
      reset(old.env)
    }
    freevec(node.vec)
  }; endcase
  by R1.1, R1.3, R3.2/4 times, R3.3, R3.7, R4.6/twice, R6.10, R6.13
  R6.16, R6.17, R7.2, R7.3, R7.6/twice, R7.7, R8.1, R8.2, R8.5, RA.1
  RA.2/4 times, RA.6/3 times
                                                                    (D.2.9)
case N1..Call:
  { let continuel = forward(D..COD)
    trans.R(pl^node).cont.(continuel, false.jump).dest.(first.reg)
    fix.here(continuel)
    trans.skip.if.in(first.reg, D..G)
    trans.jump.to(Wrong, true.jump)
   trans.call(first.reg).cont.(continue, jump).dest.(first.reg)
  }; endcase
 by R1.1, R3.2/twice, R4.2, R4.6, R5.2, R5.14, R5.15, R6.1, R6.2, R6.6
 R6.7, R6.9, R6.10, R7.6, R8.1, R8.2/twice, RA.1/twice, RA.2/3 times
                                                                   (D.2.10)
```

```
Snapshot D.2 (continued)
case N2..Call:
  {0 let continue2 = forward(D..COD)
      trans.R(pl^node).cont.(continue2, false.jump).dest.(first.reg)
     fix.here(continue2)
     trans.skip.if.in(first.reg, D..P)
     trans.jump.to(Wrong, true.jump)
      { let continuel = forward(D..COD)
       test weight^p2^node=max.reg
       then { let old.env = this.env
               let dmp.loc = trans.dump(first.reg)
               trans.E(p2<sup>node</sup>).cont.(continuel, false.jump
                       ).dest.(first.reg)
               fix.here(continuel)
               trans.call(dmp.loc, first.reg).cont.(continue, jump
                          ).dest.(first.reg)
               reset(old.env)
            }
       or
            { let nxt = next(first.reg)
              trans.E(p2^node).cont.(continuel, false.jump).dest.(nxt)
              fix.here(continuel)
              trans.call(first.reg, nxt).cont.(continue, jump
                          ).dest.(first.reg)
            }
  }0; endcase
  by R1.1, R3.2/3 times, R4.2/twice, R4.6, R5.2, R5.14/twice, R5.15, R6.1
  R6.2, R6.6, R6.7, R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/3 times
  R9.1, RA.1/5 times, RA.2/6 times
                                                                    (D.2.11)
case Nl..Resultis:
  { let continue1 = forward(D..COD)
    trans.R(pl^node).cont.(continuel, false.jump).dest.(first.reg)
    fix.here(continuel)
    trans.jump.to(look.up(RES), true.jump)
  }; endcase
  by R1.1, R3.2/twice, R4.1, R4.2, R5.2, R5.3, R5.7, R5.14, R6.1, R6.9
  R7.4, R7.6, R8.2/twice, R9.4, RA.1/twice, RA.2/twice
                                                                    (D.2.12)
case T..Break:
  trans.jump.to(look.up(BRK), true.jump); endcase
                           by R1.1, R3.2, R6.1, R7.4, R8.2, RA.1 (D.2.13)
case T..Return:
  trans.jump.to(look.up(RET), true.jump); endcase
                           by R1.1, R3.2, R6.1, R7.4, R8.2, RA.1 (D.2.14)
```

```
Snapshot D.2 (continued)
 case N2..RepeatWhile:
   { let old.env = this.env
     let restart.code = here(D..COD)
     declare(D..COD, continue, BRK)
     {0 let continue2 = forward(D..COD)
        trans.C(pl^node).cont.(continue2, false.jump)
        fix.here(continue2)
        { let continuel = forward(D..COD)
          trans.R(p2^node).cont.(continuel, false.jump).dest.(first.reg)
          fix.here(continuel)
          trans.skip.if.in(first.reg, D..T)
          trans.jump.to(Wrong, true.jump)
          test true.jump
         then { trans.jump.if.true(first.reg, restart.code)
                trans.jump.to(continue, jump)
              trans.jump.if.false(first.reg, continue)
         or
    }0
    reset(old.env)
  }; endcase
  by R1.1, R1.3, R1.4, R3.2/4 times, R3.3, R4.2, R4.6, R5.2, R5.14
  R6.1/3 times, R6.2/twice, R6.3, R6.7, R6.9/twice, R6.10/twice, R7.2
  R7.3, R7.6/twice, R8.2/4 times, R8.4, RA.1/3 times, RA.2/7 times
                                                                   (D.2.15)
case N2..Assignment:
  {0 let continue2 = forward(D..COD)
    trans.L(pl^node).cont.(continue2, false.jump).dest.(first.reg)
    fix.here(continue2)
     { let continuel = forward(D..COD)
      test weight^p2^node=max.reg
      then { let old.env = this.env
             let dmp.loc = trans.dump(first.reg)
             trans.R(p2^node).cont.(continuel, false.jump
                      ).dest.(first.reg)
             fix.here(continuel)
             Assign(dmp.loc, first.reg).cont.(continue, jump)
             reset(old.env)
           }
      or
           { let nxt = next(first.reg)
             trans.R(p2^node).cont.(continuel, false.jump).dest.(nxt)
             fix.here(continuel)
             Assign(first.reg, nxt).cont.(continue, jump)
 }0; endcase
by R1.1, R3.2/3 times, R4.2/twice, R4.6, R5.2, R5.14/twice, R6.9/twice
R6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/5 times, RA.2/5 times
                                                                  (D.2.16)
```

Snapshot D.2 (continued) let trans.L(node).cont.(continue, jump).dest.(reg) be by R1.1, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.1 (D.2.17) { let continuel = forward(D..COD) trans.E(node).cont.(continuel, false.jump).dest.(reg) fix.here(continuel) LVal(reg).cont.(continue, jump).dest.(first.reg) by R1.1, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1 R8.2, RA.1/twice, RA.2/twice (D.2.18)let trans.R(node).cont.(continue, jump).dest.(reg) be by R1.1, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.1 (D.2.19) { **let** continuel = forward(D..COD) trans.E(node).cont.(continuel, false.jump).dest.(reg) fix.here(continuel) RVal(reg).cont.(continue, jump).dest.(first.reg) } by R1.1, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1 R8.2, RA.1/twice, RA.2/twice (D.2.20)let trans.E(node).cont.(continue, jump).dest.(reg) be switchon type node into by R1.1, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.1 (D.2.21){ case T..Ident: look.up(node).dest.(reg); trans.jump.to(continue, jump); endcase by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R7.4, R8.1, RA.1/twice (D.2.22)case T..Numeral: trans.N(node).dest.(reg); trans.jump.to(continue, jump); endcase by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2 (D.2.23)case T..Quotation: trans.Q(node).dest.(reg); trans.jump.to(continue, jump); endcase by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2

(D.2.24)

```
Snapshot D.2 (continued)
```

```
case T..Plus: case T..Minus: case T..Mult: case T..Div: case T..And:
case T..Or: case T..GreaterThan: case T..LessThan: case T..Equal:
case T..LessOrEqual: case T..GreaterOrEqual: case T..NotEqual:
   {0 let continue2 = forward(D..COD)
     trans.R(p1^node).cont.(continue2, false.jump).dest.(reg)
     fix.here(continue2)
      { let continuel = forward(D..COD)
       test weight^p2^node=max.reg
       then { let old.env = this.env
              let dmp.loc = trans.dump(reg)
              trans.R(p2^node).cont.(continuel, false.jump).dest.(reg)
              fix.here(continuel)
              trans.O(type^node, dmp.loc, reg).cont.(continue, jump
                       ).dest.(reg)
              reset(old.env)
            }
       or
            { let nxt = next(reg)
              trans.R(p2<sup>node</sup>).cont.(continuel, false.jump).dest.(nxt)
              fix.here(continuel)
              trans.O(type^node, reg, nxt).cont.(continue, jump
                      ).dest.(reg)
  }0; endcase
  by R1.1, R3.2/3 times, R4.2/twice, R4.4, R5.13, R5.14/twice, R6.9/twice
  R6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/7 times, RA.2/7 times
                                                                   (D.2.25)
case N3..ConditionalExp:
  {0 let continuel = forward(D..COD)
     trans.R(pl^node).cont.(continuel, false.jump).dest.(reg)
     fix.here(continuel)
     trans.skip.if.in(reg, D..T)
     trans.jump.to(Wrong, true.jump)
     { let fcond.code = forward(D..COD)
       trans.jump.if.false(reg, fcond.code)
      trans.E(p2^node).cont.(continue, true.jump).dest.(reg)
      fix.here(fcond.code)
      trans.E(p3^node).cont.(continue, jump).dest.(reg)
 }0; endcase
 by R1.1, R1.4, R3.2/3 times, R4.2, R4.4/twice, R5.13/twice, R5.14, R6.1
 R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice
 R8.2/twice, RA.1/4 times, RA.2/6 times
                                                                   (D.2.26)
```

```
Snapshot D.2 (continued)
case N3..DefinitionByDenotationExp:
  {0 let continuel = forward(D..COD)
     trans.E(p2^node).cont.(continuel, false.jump).dest.(reg)
     fix.here(continuel)
     { let old.env = this.env
       declare(domain.of(reg), reg, pl^node)
       trans.E(p3^node).cont.(continue, jump).dest.(reg)
       reset(old.env)
 }0; endcase
  by R1.1, R3.2/3 times, R4.2, R4.4, R5.13, R5.14, R6.9, R6.10, R7.1
  R7.2, R7.6, R8.1, R8.2, RA.1/4 times, RA.2/3 times
                                                                   (D.2.27)
case N3..InitialisedDefinitionExp:
  {0 let continue2 = forward(D..COD)
     trans.R(p2^node).cont.(continue2, false.jump).dest.(reg)
     fix.here(continue2)
     { let continuel = forward(D..COD)
       LVal(reg).cont.(continuel, false.jump).dest.(first.reg)
       fix.here(continuel)
       { let old.env = this.env
         declare(domain.of(first.reg), first.reg, pl^node)
         trans.E(p3^node).cont.(continue, jump).dest.(first.reg)
         reset(old.env)
  }0; endcase
  by R1.1, R3.2/4 times, R4.2/twice, R4.4, R5.13, R5.14/twice, R5.15
 R6.9/twice, R6.10, R7.1, R7.2, R7.6, R8.1, R8.2/twice, RA.1/4 times
 RA.2/4 times
                                                                   (D.2.28)
```

```
Snapshot D.2 (continued)
```

```
case N2.. Application:
   {0 let continue2 = forward(D..COD)
      trans.R(pl^node).cont.(continue2, false.jump).dest.(reg)
      fix.here(continue2)
      { let continuel = forward(D..COD)
        test weight^p2^node=max.reg
        then { let old.env = this.env
               let dmp.loc = trans.dump(reg)
              trans.E(p2^node).cont.(continuel, false.jump).dest.(reg)
               fix.here(continuel)
              trans.skip.if.in(dmp.loc, D..F)
              trans.jump.to(Wrong, true.jump)
              trans.call(dmp.loc, reg).cont.(continue, jump
                          ).dest.(first.reg)
              reset(old.env)
            3
            { let nxt = next(reg)
       or
              trans.E(p2^node).cont.(continuel, false.jump).dest.(nxt)
              fix.here(continuel)
              trans.skip.if.in(reg, D..F)
              trans.jump.to(Wrong, true.jump)
              trans.call(reg, nxt).cont.(continue, jump).dest.(first.reg)
  }0; endcase
  by R1.1, R3.2/3 times, R4.2/twice, R4.4, R5.14/twice, R5.15, R6.1, R6.2
  R6.6, R6.7, R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/3 times, R9.1
  RA.1/5 times, RA.2/7 times
                                                                   (D.2.29)
case N2..Abstraction:
  { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domF, node)
   { let old.env = this.env
     declare(domain.of(first.par), first.par, pl^node)
     trans.E(p2^node).cont.(exit.code, false.jump).dest.(first.reg)
     reset(old.env)
   }
   trans.exit(exit.code, node)
   fix.here(skip.code)
   trans.load(D..F, ntry.domF).dest.(reg)
 }
 trans.jump.to(continue, jump); endcase
 by R1.1, R1.2, R3.2/3 times, R4.1, R4.4, R5.3, R5.8, R5.9, R5.10, R5.13
 R6.1, R6.10, R6.11, R7.1, R7.2, R8.1, R8.2/twice, RA.1/3 times
 RA.2/5 times
```

(D.2.30)

Snapshot D.2 (continued) case Nl..Routine: { let ntry.domG = forward(D..G) let exit.code = forward(D..COD) let skip.code = forward(D..COD) trans.jump.to(skip.code, true.jump) trans.entry(ntry.domG, node) { let old.env = this.env declare(D..COD, exit.code, RET) trans.C(pl^node).cont.(exit.code, false.jump) reset(old.env) } trans.exit(exit.code, node) fix.here(skip.code) trans.load(D..G, ntry.domG).dest.(reg) } trans.jump.to(continue, jump); endcase by R1.1, R3.2/3 times, R4.1, R4.6, R5.3, R5.10, R6.1, R6.10, R6.11 R7.1, R7.2, R8.1, R8.2/twice, RA.1/twice, RA.2/6 times (D.2.31)case N2..Routine: { let ntry.domP = forward(D..P) let exit.code = forward(D..COD) let skip.code = forward(D..COD) trans.jump.to(skip.code, true.jump) trans.entry(ntry.domP, node) { let old.env = this.env declare(domain.of(first.par), first.par, pl^node, D..COD, exit.code, RET) trans.C(p2^node).cont.(exit.code, false.jump) reset(old.env) } trans.exit(exit.code, node) fix.here(skip.code) trans.load(D..P, ntry.domP).dest.(reg) trans.jump.to(continue, jump); endcase by R1.1, R1.2, R3.2/3 times, R4.1, R4.6, R5.3, R5.8, R5.9, R5.10, R6.1 R6.10, R6.11, R7.1, R7.2, R8.1, R8.2/twice, RA.1/3 times, RA.2/6 times (D.2.32)case Nl..Valof: { let old.env = this.env declare(D..COD, continue, RES) trans.C(p1^node).cont.(Wrong, true.jump) reset(old.env) }; endcase by R1.1, R3.2/twice, R4.4, R4.6, R6.10, R7.1, R7.2, R8.2, RA.1/twice

RA.2/twice

(D.2.33)

```
Snapshot D.2 (continued)
 case N3..RecAbstraction:
   { let ntry.domF = forward(D..F)
    let exit.code = forward(D..COD)
    let skip.code = forward(D..COD)
    trans.jump.to(skip.code, true.jump)
    trans.entry(ntry.domF, node)
    { let old.env = this.env
      declare(domain.of(first.par), first.par, p2^node, D..F, ntry.domF,
              pl^node)
      trans.E(p3^node).cont.(exit.code, false.jump).dest.(first.reg)
      reset(old.env)
    }
    trans.exit(exit.code, node)
    fix.here(skip.code)
    trans.load(D..F, ntry.domF).dest.(reg)
  }
  trans.jump.to(continue, jump); endcase
  by R1.1, R1.2/twice, R3.2/4 times, R4.1, R4.4, R5.3, R5.8, R5.9, R5.10
  R5.13, R6.1, R6.5, R6.10, R6.11, R7.1, R7.2, R8.1, R8.2/twice
  RA.1/4 times, RA.2/6 times
                                                                 (D.2.34)
case N2...RecRoutine:
  { let ntry.domG = forward(D..G)
    let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domG, node)
   { let old.env = this.env
     declare(D..COD, exit.code, RET, D..G, ntry.domG, pl^node)
     trans.C(p2^node).cont.(exit.code, false.jump)
     reset(old.env)
   }
   trans.exit(exit.code, node)
   fix.here(skip.code)
   trans.load(D..G, ntry.domG).dest.(reg)
 }
 trans.jump.to(continue, jump); endcase
 by R1.1, R1.2, R3.2/4 times, R4.1, R4.6, R5.3, R5.10, R6.1, R6.5, R6.10
 R6.11, R7.1, R7.2, R8.1, R8.2/twice, RA.1/3 times, RA.2/7 times (D.2.35)
```

APPENDIX E

GEDANKEN

. .

Snapsnot E.1: GEDANKEN. Origina.	I Specification
Syntactic Categories	1
D:DSE.	bases
n:Nm1.	numerals
c:Chr.	characters
	quotations
1:1de.	identifiers
e:Exp.	expressions
I:ADS.	abstractions
p:Par.	parameters
s:Prog.	programs
r:RecDec.	recursive dec.
l:LabDec.	label dec.
Syntax	
b ::= n c q	
$p ::= i p_1, \dots, p_2 EmptyPar (p_1)$	
f ::= Lam p.e	the second s
$e ::= b i f e_1e_2 If e_1 Then e_2 Else e_3$	$ e_1 \text{ And } e_2 e_1 \text{ Or } e_2 $
Case e_1 of e_2 , \cdots e_3 e_1 , \cdots e_2 Emp	$tyExp e_1 = e_2 e_1 = e_2 $
$e_1; e_2 p ls e_1; e_2 r_1; \dots; r_2; l_1; \dots$	$[1_2 (e_1)^{-1}]$
r ::= i lsr f	A CARLES CARLES AND A CARLES AND A
1 ::= i:e	
Semantic Domains	
$T = [\{ TRUE \} + \{ FALSE \}].$	truth values
n:N.	integers
Н.	characters
Q.	quotations
O=[T + N + H + Q].	output values
$At = [\{ LI \} + \{ UI \} + GAt].$	atoms
GAt.	generated atoms
B = [T + N + H + Q + At].	basic values
$f:F=[E \rightarrow K \rightarrow C].$	functions
$c:C=[S \rightarrow A]$.	label values
L.	locations
$Im = [F \times F]$.	implicit references
Rf = [L + Im].	references
e:E=[B + F + C + Rf].	expressible values
$A = [\{ Erro \} + B + [O \times A]].$	answers
$k:K=[E \rightarrow C]$.	expression cont.
$x:X=[U \ge C]$.	parameter cont.
D=E.	denotable values
$p:U=[Ide \rightarrow D]$.	environments
V=E.	storable values
$S=[[L \rightarrow [V \times T]] \times [At \rightarrow T] \times H^* \times O^*].$	stores
e [[e, [, v r]] v [ur , r] v u v o].	ULUL CO

- 225 -	
---------	--

Snapshot E.1 (continued)	
$Ccoerce: [E \rightarrow K \rightarrow C]$	
Cerror:C.	
NCequal: [F > K > c]	
NCcot: $[F > K > c]$	
$ \begin{array}{c} Robert_{C}[C] \\ Colecto_{C}[C] \\ Colecto_$	
Select: $[C^* \neq N \neq C \neq C]$.	
Seq: $[E^* \rightarrow F]$.	
$B:[Bse \neq B].$	
$M:[Prog \rightarrow H^* \rightarrow A].$	
Semantic Domains of 'Interest'	
ENV=U.	
REG=E.	environments
TEM=F.	registered values
	templates
Semantic Equations	
$\mathbf{E}: [\mathrm{Exp} \neq \mathrm{U} \neq \mathrm{K} \neq \mathrm{C}].$	
	(E.1.1)
E[b]pk=	
k(B[b]).	a second
	(E.1.2)
E[i]pk=	
$k\{p[i]\}$.	
	(E.1.3)
E[f]pk=	
$k{F[f]p}$.	
	(E.1.4)
E[e.e.]pk=	
Rie ple erfeinde inter totalette	
in in the control of the steps	(E.1.5)
Elife. Then e Fise a lok-	
RIE In the error interesting interesting in the second sec	
""" 1 prove . e. 190 19 Ele 2 jpk, Ele 3 jpk, Cerror }.	(E.1.6)
Cle And a late	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
$k[e_1]p[ke.e!] \neq k[e_2]pk, kFALSE, Cerror\}.$	(E.1.7)
	()
$e_1 \text{ or } e_2 \text{ Jpk} =$	
$K[e_1]p\{xe.e?T \neq T \neq kTRUE, R[e_2]pk, Cerror\}.$	(F 1 0)
2	(E.1.8)
$[Case e_1 \text{ Of } e_2, \dots, e_n]pk=$	
$R[e_1]p^{-2}$	
{re.e?N>Select <e[e_]pk,,e[e_]pk)(ein)corror< td=""><td></td></e[e_]pk,,e[e_]pk)(ein)corror<>	
e ?At $(e At)=L1\neq k$ 1, $(e At)=H1\neq k(\#f)$ 1) Common	
("[···]), cerror, Cerro	(E.1.9)
$[e_1, \dots, e_n]_{pk=1}$	
Ele, lp{}eEle lp{}e'.k/Secto	
- I	(E.1.10)
[EmptyExplok=	
k{Sea()}	
	(E.1.11)
[e =e]pk-	
Re Tribe Ple letter ve atte	
\mathbb{R}^{2}	(E, 1, 12)
	(

A STATE OF A DAMESTER
(E.1.13)
(E.1.14)
(E.1.15)
· ´},,
· · / 1 * [1 ₂])) * 2 * 1
(E.1.16)
(E.1.17)
(E.1.18)
(E.1.19)
,p ₂])x},Cerror} (E.1.20)
(E.1.21)
(E.1.22)
(E.1.23)
(E.1.24)
(E.1.25)
(E.1.26)
(E.1.27)
(E.1.28)

```
Snapshot E.2: GEDANKEN. BCPL
let trans.E(node).cont.(continue, jump).dest.(reg) be
switchon type node into
               by R1.1, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.1
{ case T..Numeral: case T..Character: case T..Quotation:
                                                                      (E.2.1)
    trans.B(node).dest.(reg); trans.jump.to(continue, jump); endcase
   by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R8.1, RA.1/twice, RA.2
                                                                      (E.2.2)
 case T.. Ident:
   look.up(node).dest.(reg); trans.jump.to(continue, jump); endcase
   by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R7.4, R8.1, RA.1/twice
                                                                      (E.2.3)
 case N2..Lambda:
   trans.F(node).dest.(reg); trans.jump.to(continue, jump); endcase
   by R1.1, R3.2/twice, R4.1, R5.3, R6.1, R6.10, R7.6, R8.1, RA.1/twice
   RA.2
                                                                      (E.2.4)
 case N2...FunctionDesignator:
   {0 let continue2 = forward(D..COD)
      trans.R(pl^node).cont.(continue2, false.jump).dest.(reg)
      fix.here(continue2)
      trans.skip.if.in(reg, D..F)
      trans.jump.to(Cerror, true.jump)
      { let continuel = forward(D..COD)
        test weight^p2^node=max.reg
        then { let old.env = this.env
               let dmp.loc = trans.dump(reg)
               trans.E(p2<sup>node</sup>).cont.(continuel, false.jump).dest.(reg)
               fix.here(continue1)
               trans.call(dmp.loc, reg).cont.(continue, jump
                          ).dest.(first.reg)
               reset(old.env)
            }
       or
             { let nxt = next(reg)
              trans.E(p2^node).cont.(continuel, false.jump).dest.(nxt)
              fix.here(continuel)
              trans.call(reg, nxt).cont.(continue, jump).dest.(first.reg)
  }0; endcase
  by R1.1, R3.2/3 times, R4.2/twice, R4.4, R5.14/twice, R5.15, R6.1, R6.2
  R6.6, R6.7, R6.9/twice, R6.10, R7.6/twice, R8.1, R8.2/3 times, R9.1
  RA.1/5 times, RA.2/6 times
                                                                     (E.2.5)
```

Snapshot E.2 (continued) case N3..Conditional: {0 let continuel = forward(D..COD) trans.R(pl^node).cont.(continuel, false.jump).dest.(reg) fix.here(continuel) trans.skip.if.in(reg, D..T) trans.jump.to(Cerror, true.jump) { let fcond.code = forward(D..COD) trans.jump.if.false(reg, fcond.code) trans.E(p2^node).cont.(continue, true.jump).dest.(reg) fix.here(fcond.code) trans.E(p3^node).cont.(continue, jump).dest.(reg) }0; endcase by R1.1, R3.2/3 times, R4.2, R4.4/twice, R5.13/twice, R5.14, R6.1 R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/3 times, R8.1/twice R8.2/twice, RA.1/4 times, RA.2/6 times (E.2.6)case N2..And: {0 let continuel = forward(D..COD) trans.R(pl^node).cont.(continuel, false.jump).dest.(reg) fix.here(continuel) trans.skip.if.in(reg, D..T) trans.jump.to(Cerror, true.jump) { let fcond.code = forward(D..COD) trans.jump.if.false(reg, fcond.code) trans.R(p2^{node}).cont.(continue, true.jump).dest.(reg) fix.here(fcond.code) trans.load(D..T, FALSE).dest.(reg) trans.jump.to(continue, jump) }0; endcase by R1.1, R3.2/3 times, R4.1, R4.2, R4.4, R5.3, R5.7, R5.13, R5.14 R6.1/twice, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/twice, R8.1/twice R8.2/twice, RA.1/3 times, RA.2/6 times (E.2.7) case N2..Or: {0 let continuel = forward(D..COD) trans.R(pl^node).cont.(continuel, false.jump).dest.(reg) fix.here(continue1) trans.skip.if.in(reg, D..T) trans.jump.to(Cerror, true.jump) { let fcond.code = forward(D..COD) trans.jump.if.false(reg, fcond.code) trans.load(D..T, TRUE).dest.(reg) trans.jump.to(continue, true.jump) fix.here(fcond.code) trans.R(p2^node).cont.(continue, jump).dest.(reg) }0; endcase by R1.1, R3.2/3 times, R4.1, R4.2, R4.4, R5.3, R5.7, R5.13, R5.14 R6.1/twice, R6.2/twice, R6.7, R6.9, R6.10/twice, R7.6/twice, R8.1/twice R8.2/twice, RA.1/3 times, RA.2/6 times (E.2.8)

- 228 -

```
Snapshot E.2 (continued)
case N2..Case:
  { let node.vec2 = open.node(p2^node)
    {0 let continuel = forward(D..COD)
       trans.R(pl^node).cont.(continuel, false.jump).dest.(reg)
       fix.here(continuel)
       { let fcond.code = forward(D..COD)
         trans.skip.if.in(reg, D...N)
         trans.jump.to(fcond.code, true.jump)
         { let code.vec2 = forward.vec(!node.vec2, D..COD)
          let skip.code = forward(D..COD)
          trans.jump.to(skip.code, true.jump)
          for inx=1 to !node.vec2
          do { fix.here(code.vec2!inx)
               trans.E(node.vec2!inx).cont.(continue, true.jump
                       ).dest.(reg)
             }
          fix.here(skip.code)
          Select(code.vec2, reg).cont.(Cerror, true.jump)
          freevec(code.vec2)
        }
        fix.here(fcond.code)
        trans.skip.if.in(reg, D..At)
        trans.jump.to(Cerror, true.jump)
        { let fcond.code = forward(D..COD)
          trans.skip.if(i.skipEQ, reg, L1)
          trans.jump.to(fcond.code, true.jump)
          trans.load(D..N, make.num(1)).dest.(reg)
          trans.jump.to(continue, true.jump)
         fix.here(fcond.code)
         trans.skip.if(i.skipEQ, reg, U1)
         trans.jump.to(Cerror, true.jump)
         trans.load(D..N, make.num(!node.vec2)).dest.(reg)
         trans.jump.to(continue, jump)
  }0
  freevec(node.vec2)
}; endcase
by R1.1, R3.2/6 times, R3.7, R4.1/twice, R4.2, R4.4/twice, R4.6
R5.3/twice, R5.7/twice, R5.13/twice, R5.14, R5.19/twice, R6.1/4 times
R6.2/4 times, R6.7/twice, R6.9, R6.10/4 times, R6.13, R6.15
R7.6/3 times, R8.1/4 times, R8.2/7 times, R8.5, RA.1/twice
RA.2/11 times, RA.10/twice
                                                                  (E.2.9)
```

(1.2.))

```
Snapshot E.2 (continued)
case NX..Sequence:
  { let node.vec = open.node(node)
    { let old.env = this.env
      let old.off = this.off
      for inx=1 to !node.vec-1
      do { { let continuel = forward(D..COD)
             trans.E(node.vec!inx).cont.(continuel, false.jump
                     ).dest.(reg)
             fix.here(continuel)
           }
           trans.dump(reg)
         }
      unless !node.vec=0
      do { let continue2 = forward(D..COD)
           trans.E(node.vec!!node.vec).cont.(continue2, false.jump
                   ).dest.(reg)
           fix.here(continue2)
           trans.dump(reg)
           Seq(old.off).dest.(reg)
           trans.jump.to(continue, jump)
         }
      reset(old.env)
    }
    freevec(node.vec)
  }; endcase
  by R1.1, R3.2/4 times, R3.7, R4.1, R4.2, R4.6, R4.7, R5.14, R5.16, R6.1
  R6.9, R6.10, R6.18, R7.6/twice, R8.1, R8.2/twice, RA.1, RA.2/4 times
                                                                  (E.2.10)
case NO..EmptyExp:
 Seq(reg); trans.jump.to(continue, jump); endcase
       by R1.1, R3.2/twice, R4.1, R5.13, R6.1, R6.10, R8.1, RA.1 (E.2.11)
```

```
Snapshot E.2 (continued)
 case N2..Equal:
   {0 let continue2 = forward(D..COD)
      trans.R(pl^node).cont.(continue2, false.jump).dest.(reg)
      fix.here(continue2)
      { let continuel = forward(D..COD)
        test weight^p2^node=max.reg
        then { let old.env = this.env
               let dmp.loc = trans.dump(reg)
               trans.R(p2^node).cont.(continuel, false.jump).dest.(reg)
               fix.here(continuel)
              NCequal(Seq(dmp.loc).dest.(reg)).cont.(continue, jump
                       ).dest.(first.reg)
              reset(old.env)
             }
       or
             { let nxt = next(reg)
              trans.R(p2<sup>node</sup>).cont.(continuel, false.jump).dest.(nxt)
              fix.here(continuel)
              NCequal(Seq(reg).dest.(nxt)).cont.(continue, jump
                      ).dest.(first.reg)
  }0; endcase
  by R1.1, R3.2/4 times, R4.2/twice, R4.4, R5.14/twice, R5.15, R6.9/twice
  R6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/5 times, RA.2/5 times
                                                                    (E.2.12)
case N2..Assignment:
  {0 let continue2 = forward(D..COD)
    trans.E(pl^node).cont.(continue2, false.jump).dest.(reg)
     fix.here(continue2)
     { let continuel = forward(D..COD)
       test weight^p2^node=max.reg
       then { let old.env = this.env
              let dmp.loc = trans.dump(reg)
             trans.R(p2^node).cont.(continuel, false.jump).dest.(reg)
             fix.here(continuel)
             NCset(Seq(dmp.loc).dest.(reg)).cont.(continue, jump
                    ).dest.(first.reg)
             reset(old.env)
           }
      or
           { let nxt = next(reg)
             trans.R(p2^node).cont.(continuel, false.jump).dest.(nxt)
             fix.here(continuel)
             NCset(Seq(reg).dest.(nxt)).cont.(continue, jump
                   ).dest.(first.reg)
 }0; endcase
 by R1.1, R3.2/4 times, R4.2/twice, R4.4, R5.14/twice, R5.15, R6.9/twice
 R6.10, R7.6/twice, R8.1, R8.2/twice, R9.1, RA.1/5 times, RA.2/5 times
                                                                   (E.2.13)
```

Snapshot E.2 (continued)
case N2Compound:
{ let continuel = forward(DCOD)
<pre>trans.E(pl^node).cont.(continuel, false.jump).dest.(reg)</pre>
fix.here(continuel)
<pre>trans.E(p2^node).cont.(continue, jump).dest.(reg)</pre>
}; endcase
by R1.1, R3.2/twice, R4.2, R4.4, R5.13, R5.14, R6.9, R6.10, R7.6/twice
R8.1, R8.2, RA.1/3 times, RA.2/3 times (E.2.14)
case N3Dec:
$\{0 \ let \ continue2 = forward(DCOD)$
<pre>trans.E(p2^node).cont.(continue2, false.jump).dest.(reg)</pre>
fix.here(continue2)
{ let old.env = this.env
<pre>let continue1 = forward(DCOD)</pre>
<pre>trans.P(pl^node, reg).cont.(continuel, false.jump)</pre>
fix.here(continuel)
<pre>trans.E(p3^node).cont.(continue, jump).dest.(reg) reset(old.env)</pre>
<pre>}0; endcase</pre>
by R1.1, R3.2/3 times, R4.2/twice, R4.4, R5.13, R5.14, R6.9/twice
R6.10, R7.6/3 times, R7.8, R8.1, R8.2/twice, RA.1/4 times, RA.2/5 times (E.2.15)

- 232 -

```
Snapshot E.2 (continued)
    case N2..Block:
      { let node.vec1 = open.node(pl^node)
        let node.vec2 = open.node(p2^node)
        { let old.env = this.env
          let code.vec1 = forward.vec(!node.vec1, D..F)
         let code.vec2 = forward.vec(!node.vec2, D..COD)
          for inx=1 to !node.vec1
         do declare(D..COD, code.vecl!inx, pl^node.vecl!inx)
          for inx=1 to !node.vec2
         do declare(D..COD, code.vec2!inx, pl^node.vec2!inx)
         for inx=1 to !node.vec1
         do { trans.F(p2^node.vecl!inx).dest.(reg)
              fix.with(code.vecl!inx, reg)
         for inx=1 to !node.vec2-1
         do { fix.here(code.vec2!inx)
              trans.E(p2^node.vec2!inx).cont.(code.vec2!(inx+1), true.jump
                      ).dest.(reg)
            }
         unless !node.vec2=0
         do { fix.here(code.vec2!!node.vec2)
              trans.E(p2^node.vec2!!node.vec2).cont.(continue, jump
                      ).dest.(reg)
            }
         freevec(code.vec2)
         freevec(code.vec1)
         reset(old.env)
       freevec(node.vec2)
      freevec(node.vecl)
     }; endcase
    by R1.1, R1.3, R3.2/6 times, R3.3, R3.7/twice, R4.2, R4.4, R5.3/twice
    R5.13, R5.14, R6.10, R6.13, R6.16, R6.17/twice, R7.2, R7.3
    R7.6/4 times, R7.7/twice, R8.1, R8.2, R8.5/3 times, RA.1, RA.2/7 times
    RA.6/5 times
                                                                      (E.2.16)
  case N1..BraExp:
    trans.E(pl^node).cont.(continue, jump).dest.(reg); endcase
    by R1.1, R3.2, R4.4, R5.13, R6.10, R7.6, R8.1, RA.1/twice, RA.2 (E.2.17)
let trans.P(node, reg).cont.(continue, jump) be switchon type node into
        by R1.1, R3.1, R4.3, R5.12, R5.18, R6.10, R7.5, R8.1, RA.1 (E.2.18)
{ case T..Ident:
    declare(domain.of(reg), reg, node); trans.jump.to(continue, jump)
    endcase
    by R1.1, R3.2/twice, R4.1, R5.18, R6.1, R6.10, R7.2, R8.1, RA.1/twice
                                                                     (E.2.19)
```

}

```
Snapshot E.2 (continued)
   case NX..SeqPar:
     { let node.vec = open.node(node)
       {0 let continue2 = forward(D..COD)
          Ccoerce(reg).cont.(continue2, false.jump).dest.(first.reg)
          fix.here(continue2)
         `trans.skip.if.in(first.reg, D..F)
          trans.jump.to(Cerror, true.jump)
          { let dmp.loc = trans.dump(first.reg)
            for inx=1 to !node.vec-1
            do { { let continuel = forward(D..COD)
                   trans.U(node.vec!inx, first.reg, make.num(inx)
                          ).cont.(continuel, false.jump)
                   fix.here(continuel)
                 }
                 trans.load(D..F, dmp.loc).dest.(first.reg)
               }
           unless !node.vec=0
           do trans.U(node.vec!!node.vec, first.reg, make.num(size^node)
                      ).cont.(continue, jump)
      }0
      freevec(node.vec)
    }; endcase
    by R1.1, R3.2/3 times, R3.7, R4.2, R4.4, R4.6, R4.7, R5.14, R5.15
    R5.17, R5.18, R6.1, R6.2, R6.7, R6.9, R6.10, R6.18, R7.6/twice, R7.9
    R7.11, R8.1, R8.2/3 times, RA.1/twice, RA.2/6 times, RA.9, RA.10/twice
                                                                     (E.2.20)
  case NO..EmptyPar:
    trans.jump.to(continue, jump); endcase
               by R1.1, R3.2, R4.1, R6.1, R6.10, R7.10, R8.1, RA.1 (E.2.21)
  case N1..ParBra:
    trans.P(pl^node, reg).cont.(continue, jump); endcase
    by R1.1, R3.2, R4.4, R5.18, R6.10, R7.6, R7.11, R8.1, RA.1/twice, RA.2
                                                                     (E.2.22)
}
let trans.R(node).cont.(continue, jump).dest.(reg) be
               by R1.1, R3.1, R4.3, R5.12, R6.10, R7.5, R8.1, RA.1 (E.2.23)
{ let continuel = forward(D..COD)
  trans.E(node).cont.(continuel, false.jump).dest.(reg)
 fix.here(continuel)
 Ccoerce(reg).cont.(continue, jump).dest.(first.reg)
   by R1.1, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R6.9, R6.10, R7.6, R8.1
   R8.2, RA.1/twice, RA.2/twice
                                                                     (E.2.24)
```

```
Snapshot E.2 (continued)
 let trans.F(node).dest.(reg) be
                                    by R1.1, R3.1, R5.1, R7.5, RA.1 (E.2.25)
 { let ntry.domF = forward(D..F)
   let exit.code = forward(D..COD)
   let skip.code = forward(D..COD)
   trans.jump.to(skip.code, true.jump)
   trans.entry(ntry.domF, node)
   { let old.env = this.env
     let continue = forward(D..COD)
     trans.P(pl^node, first.par).cont.(continue, false.jump)
    fix.here(continue)
    trans.E(p2^node).cont.(exit.code, false.jump).dest.(first.reg)
    reset(old.env)
  }
  trans.exit(exit.code, node)
  fix.here(skip.code)
  trans.load(D..F, ntry.domF).dest.(reg)
    by R1.1, R1.2, R3.2/twice, R4.2, R4.4, R5.3, R5.8, R5.9, R5.10, R5.13
    R6.9, R6.11, R7.6/twice, R7.8, R8.2/3 times, RA.1/3 times, RA.2/7 times
                                                                     (E.2.26)
let trans.U(node, f, reg).cont.(continue, jump) be
```

```
by R1.1, R3.1, R4.3, R5.12, R5.18, R6.10, R7.5, R8.1, RA.1
{ let continue1 = forward(D..COD)
                                                                   (E.2.27)
 trans.call(f, reg).cont.(continuel, false.jump).dest.(first.reg)
 fix.here(continuel)
```

```
trans.P(node, first.reg).cont.(continue, jump)
  by R1.1, R3.2/twice, R4.2, R4.4, R5.14, R5.15, R5.18, R6.6, R6.9, R6.10
}
```

}

```
R7.6, R7.11, R8.1, R8.2, RA.1/twice, RA.2/twice
                                                                 (E.2.28)
```

